System Feature Description: Importing Refutations into the GAPT Framework PxTP Workshop, Manchester Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener, Mikheil Rukhaia, Daniel Weller and Bruno Woltzenlogel-Paleo June 30, 2012 - Introduction - 2 The TAP Prover - Replaying - Example - Conclusion ## Introduction #### Context: GAPT Framework GAPT = General Architecture for Proofs and Theorems provides (in different stages of development): - Languages (Typed Lambda Calculus, First Order Logic, Higher Order Logic) - Calculi (various Sequent Calculi, Resolution) - Algorithms (Unification, Matching, ...) - Interactive theorem prover (TAP) - Proof Transformations (Proof Skolemization, Cut-elimination by Resolution, Herbrand Sequent Extraction) ## **CERES** #### Short overview of the CERES method - Preprocessing of the input Sequent Calculus proof (Skolemization, Regularization) - Extraction of the characteristic clause set - Refutation of the characteristic clause set by an external resolution theorem prover - Constructing proof projections to clauses from the characteristic clause set - Constructing a proof in atomic-cut normal form from the refutation and the projections # Importing a Proof # Problems with Proof Parsing - Variable renaming - Substitutions not given - Variety of inference rules - Contraction of several inferences into one - Incomplete or outdated documentation of the inference rules Clause set: $$\{ \vdash P(a); P(x) \vdash P(f(x)); \vdash f(x) = g(x); P(g(a)) \vdash \}$$ #### Refutation: $$\cfrac{ \vdash P(a) \qquad P(x) \vdash P(f(x))}{ \vdash P(f(a))} \; \textit{Res} \; \sigma = \{x \mapsto a\} \qquad \qquad \vdash f(x) = g(x) \qquad \qquad \vdash p(g(a)) \vdash \qquad \qquad \qquad \vdash P(g(a)) \vdash \qquad \qquad \vdash P(g(a)) \vdash$$ ◄□▶ ◄□▶ ◄□▶ ◄□▶ ◄□▶ ₹ ₹ ₽ ♥ ``` Prover9: ``` ``` 1 f(x) = g(x). [assumption]. 2 -P(x) | P(f(x)). [assumption]. 3 -P(x) | P(g(x)). [copy(2),rewrite([1(2)])]. 4 P(a). [assumption]. 5 -P(g(a)). [assumption]. 6 P(g(a)). [hyper(3,a,4,a)]. 7 $F. [resolve(6,a,5,a)]. ``` ``` SPASS: ``` ``` 1[0:Inp] || -> equal(g(U),f(U))**. 2[0:Inp] P(U) || -> P(f(U))*. 3[0:Inp] || -> P(a)*. 4[0:Inp] || P(g(a))* -> . 5[0:Rew:1.0,4.0] || P(f(a))* -> . 7[0:Res:2.1,5.0] P(a) || -> . 8[0:SSi:7.0,3.0] || -> . ``` ## Vampire: ``` 7. $false (1:0) [subsumption resolution 6,3] ``` - 3. 'P'(a) (0:2) [input] - 6. "'P'(a) (1:2) [resolution 5,4] - 4. ~'P'(g(a)) (0:3) [input] - 5. 'P'(g(X0)) | ~'P'(X0) (0:5) [definition unfolding 2,1] - 1. f(X0) = g(X0) (0:5) [input] - 2. 'P'(f(X0)) | ~'P'(X0) (0:5) [input] ## Vampire TPTP output: ``` fof(f7,plain,($false), inference(subsumption_resolution,[],[f6,f3])). fof(f3,axiom,('P'(a)), file('simple.tptp',unknown)). fof(f6,plain,(~'P'(a)), inference(resolution, [], [f5,f4])). fof(f4,axiom,(~'P'(g(a))), file('simple.tptp',unknown)). fof(f5,plain,((! [X0]: ('P'(g(X0)) | ~'P'(X0)))), inference(definition_unfolding,[],[f2,f1])). fof(f1,axiom,((![X0]:(f(X0)=g(X0)))), file('simple.tptp',unknown)). fof(f2,axiom,((![X0]:('P'(f(X0))|~'P'(X0)))). file('simple.tptp',unknown)). ``` #### Common Structure • Inference label by: clause id, premise ids, clause, rule name #### **Problem** - Parse proof of an external resolution prover - Fill in missing information - Normalize proof to use only resolution and paramodulation # Approach - Extract premises and target clause from proof step - Use internal prover TAP to reprove each single step (forward resolution) - Construct full refutation from the steps #### The TAP Prover - Simple resolution prover - Intended for interactive use and experiments - Commands based ## TAP Internals - Configuration: State + Commands Queue + Data - State: clause set + guidance map - Command: Function from configuration to list of successor states (possibly empty) - Data: information passed only to following command, not stored in state # Commands for original use (interactive theorem prover) - Resolve - Paramodulation - Factor - Variants - DeterministicAnd - SetStream - SetTargetClause - InsertResolvent - RefutationReached # Changes for Replaying ## Changes - Store resolution proofs instead of clauses - Add new commands: Prover9Init, Replay, guidance commands #### Prover9Init - Pass clause set to theorem prover and parse result - Schedule InsertResolvent and AddGuidedInitialClause command for each assumption - Schedule Factor command for each factoring inference - Schedule Replay command for every other inference step # Changes for Replaying # Replay - Create new TAP instance - Get proofs for premise clauses from guidance map - Schedule SetClauseWithProof command for the premise clauses - Schedule SetTargetClause command for the target clause - Initialize prover to use Resolution and Paramodulation for proof search - Start proof search - Add proof found to guidance map and schedule InsertResolvent command for proof of target clause # Changes for Replaying # Guidance Map Management - SetClauseWithProof - AddGuidedInitialClause - AddGuidedClauses - GetGuidedClauses - IsGuidedNotFound ## Command Queue after Prover9Init ``` AddGuidedInitialClause(1, List(= (f(x), g(x)))) InsertResolvent AddGuidedInitialClause(2, List(\neg P(x), P(f(x)))) InsertResolvent ``` Replay(List(0, 2, 1)) AddGuidedInitialClause(4, List(P(a))) InsertResolvent AddGuidedInitialClause(5, List($\neg P(g(a))$)) InsertResolvent Replay(List(0, 3, 4)) Replay(List(0, 6, 5)) # Replayed Example $$\begin{array}{c} \frac{ \left| \begin{array}{c} \vdash f(x) = g(x) \\ \hline \vdash f(x_{\mathbf{6}}) = g(x_{\mathbf{6}}) \end{array} \right| Variant}{ \left| \begin{array}{c} \vdash P(x) \vdash P(f(x)) \\ \hline P(x_{\mathbf{5}}) \vdash P(f(x_{\mathbf{5}})) \end{array} \right| Variant} \\ \frac{ P(x_{\mathbf{5}}) \vdash P(g(x_{\mathbf{5}})) \\ \hline P(x_{\mathbf{10}}) \vdash P(g(x_{\mathbf{10}})) \end{array}}{ \left| \begin{array}{c} \vdash P(g(a)) \vdash \\ \hline P(g(a)) \vdash \end{array} \right|} \begin{array}{c} Variant \\ Variant \\ Res \ \sigma = \{x_{\mathbf{10}} \mapsto a\} \end{array} \\ \begin{array}{c} \vdash P(g(a)) \vdash \\ Res \end{array}$$ #### **Pitfalls** #### **Pitfalls** - Forward reasoning prevents some strategies - Factorization can not only be applied after an inference step - No reflexivity rule: add reflexivity axiom or unfold rule - Equations might get flipped - Expectation that a single inference is provable in few steps not met #### Conclusion and Future Work - Normalized proof with instantiations needed for cut-elimination and Herbrand sequent extraction - Replay of Prover9 proofs works for small examples, performance issues for larger ones - Macro rules with large numbers of premises need specialized handling (necessary for Vampire/SPASS/E/... integration) Thanks for the attention!