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Abstract. GAPT (General Architecture for Proof Theory) is a proof
theory framework containing data structures, algorithms, parsers and
other components common in proof theory and automated deduction.
In contrast to automated and interactive theorem provers whose focus
is the construction of proofs, GAPT concentrates on the transformation
and further processing of proofs. In this paper, we describe the current
2.0 release of GAPT.

1 Introduction

This paper describes the system GAPT (General Architecture for Proof Theory).
GAPT is a versatile proof theory framework containing data structures, algo-
rithms, parsers and other components common in proof theory and automated
deduction. In contrast to automated and interactive theorem provers whose fo-
cus is the construction of proofs, GAPT concentrates on the transformation and
further processing of proofs.

We are convinced that such a system is of importance to computational
proof theory and automated deduction because of the growing interest in the
output of provers. It is no longer enough for a prover to answer with yes or no
as often a proof object (or a countermodel) is sought for further processing.
For example, the use of SAT-solvers for solving various problems in NP needs
the solver to return a propositional interpretation or a refutation as certificate
of unsatisfiability. The use of interpolation in software verification needs proofs
(or interpolants) as output. The use of automated reasoning systems in proof
assistants—e.g., Sledgehammer in Isabelle—needs to provide proofs to incorpo-
rate in the proof script. This change in role of automated theorem provers is also
reflected in the growing interest in proof certificates, e.g., in research projects
like ProofCert [16], Dedukti [4], in common formats for proofs shared between
provers like TPTP derivations [21] and OpenTheory [13] and in conference se-
ries like Certified Programs and Proofs (CPP). It is also reflected in CASC (the
CADE ATP System Competition) evaluating theorem provers considering the
number of problems solved presenting a solution, i.e. a proof [20].
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GAPT provides a rich reservoir of functionality for the transformation and
further processing of formal proofs in a uniform framework. GAPT contains in-
terfaces to a variety of automated reasoning systems including first-order provers,
SAT-solvers and SMT-solvers. Thus it provides a platform which is well-suited
not only for computational proof theory but also for the cooperation of auto-
mated provers.

GAPT has been used as an environment to experiment with the implementa-
tion of several specific algorithms and tools: cut elimination by resolution [3,10,2],
post-processing of resolution proofs [12,14], cut introduction [7,11,8,9], and in-
ductive theorem proving based on tree grammars [6]. In addition to these appli-
cations, the graphical user interface has been described in detail in [5,14] and
GAPT’s use of expansion trees for proof import in [17]. Using a single system
for these applications had a synergistic effect since all these algorithms share
a common basis. This basis has been developed and extended into the GAPT
system which has now reached a level of maturity to be of interest for its own
sake. We mark this occasion by the release of version 2.04 and the first system
description of GAPT as a whole. GAPT is implemented in Scala and licensed
under the GNU General Public License. It is available at

https://logic.at/gapt

2 Features

Formulas. Terms and formulas are uniformly represented as expressions in a
simply typed lambda calculus with multiple base sorts. This representation al-
lows considerable code reuse: for example, substitutions are only defined once for
terms, atoms, formulas, etc. While these are all represented as lambda expres-
sions, they are each instance of a more specific Scala type as well: FOLAtom is a
subtype of HOLFormula, which is in turn a subtype of LambdaExpression. These
Scala types are determined at run-time using smart constructors. In this way,
we support type-safe programming with defined subsets of LambdaExpression.
GAPT allows arbitrary Unicode strings as names for constants, variables, pred-
icate symbols, etc.

Proofs. GAPT contains an implementation of a standard sequent calculus LK
for classical higher-order logic as well as a version of the sequent calculus using
Skolem terms instead of eigenvariables (LKsk, see [10] for details). In addition,
it contains resolution calculi: Ral (see [10]) which is a labelled variant of An-
drew’s R [1] and a standard first-order resolution calculus. GAPT also contains
expansion proofs [15], a generalisation of the notion of Herbrand-disjunction to
arbitrary formulas in higher-order logic. The proof objects in these calculi are
automatically validated during the construction of each inference, preventing
ill-formed proofs. This eager validation has been highly valuable for the early

4 For a list of changes and new features in the 2.0 release specifically, please refer to
the release notes: https://github.com/gapt/gapt/blob/master/RELEASE-NOTES.md
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detection of bugs. Our main focus is on tree-like proofs in first and higher-order
logic, these usually have less than 1000 inferences. In resolution, GAPT can work
with dag-like proofs of about 10000 inferences.

Algorithms. GAPT contains a number of basic algorithms like transformations
between the above-mentioned proof calculi, Skolemisation and regularisation of
sequent calculus proofs, naive and structural first-order clause normal form trans-
formations, proof pruning, etc. More advanced algorithms include: Gentzen-style
cut elimination in the sequent calculus, interpolation in first-order proofs and
a built-in tableaux prover for (classical) propositional logic as a quick way to
generate propositional sequent calculus proofs.

First-order theorem proving. GAPT interfaces with several first-order theorem
provers: it can invoke and import proofs from Vampire, the E prover, and
Prover9. There is specific proof import code for Prover9, which successfully
imports more than 99% of the Prover9 solutions in the TSTP [19] as GAPT
resolution proofs. In addition, there is a general purpose import for TPTP-
proofs based on proof replay, which currently imports 34% of the FOF and CNF
solutions in the TSTP from a total of 12 different provers. We are currently
also developing leanCoP-specific import code [17] to have reliable import for
non-resolution first-order provers.

SAT- and SMT-solving. GAPT is able to export formulas as SMT-LIB bench-
marks and can check their satisfiability modulo QF_UF with an arbitrary SMT-
LIB compliant SMT-solver. This interface natively supports many-sorted logic,
and works with at least Z3, CVC4, and veriT. Proof import is implemented
for the QF UF logic for veriT, see [17]. For propositional formulas, GAPT writes
DIMACS files and can use any DIMACS-compliant SAT-solver to check their
satisfiability and import satisfying assignments. We support Glucose, Sat4j, and
miniSAT out of the box—adding support for other solvers usually only requires
specifying the executable path. In addition, GAPT also provides an interface
to solvers for the MaxSAT optimization problem, such as OpenWBO and the
MaxSAT solver in Sat4j.

User interfaces. GAPT comes with two user interfaces: the system’s full func-
tionality is available via a customised Scala shell, thus providing a flexible and
scriptable command-line interface. In addition, GAPT provides a graphical user
interface, prooftool, to conveniently display large proofs and other objects. For
example, prooftool also includes a viewer for expansion trees with a point-and-
click interface to selectively expand quantifiers, see [12]. Large proofs in LK can
be visualized using a so-called Sunburst viewer [14]. Sunburst visualisations are
radial, space-filling representations of hierarchical information [18]: instead of a
tree, the inferences in a proof are displayed as concentric rings.

These logics, proof systems and interfaces with other provers are not intended
to be a final fixed set of features in GAPT. The system’s architecture allows the
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implementation of extensions, so new logics and proof systems can be added
as they become necessary while having a versatile collection of tools readily
available for tests and analysis.

3 Example

Figure 1 shows a first-order prover utilising the GAPT API. This example is
not meant to implement a practically relevant, efficient, or short prover, but to
illustrate the features provided by GAPT. The prover continuously generates
new instances of clauses in the input clause set by unifying literals of opposite
polarity. The done set contains the clauses where the pairwise unifiers have al-
ready been computed, in each iteration we pick a clause from the todo queue and
unify it with all clauses in done. When the set of instances becomes proposition-
ally unsatisfiable (which we check using the Sat4j SAT solver5), we minimize
the number of instances using minimalExpansionSequent and convert the in-
stances to a proof in LK using ExpansionProofToLK. The resulting proof is then
displayed in a GUI window using prooftool.

Utilising the functionality already provided by GAPT, we can concentrate on
the actual algorithm, while the interface and “glue code” is already implemented
for us, such as:

– formula parsing
– robust structural clausification (including Skolemisation)
– unification, matching and substitution
– SAT solver interface
– proof construction (and validation)
– proof simplification
– graphical visualisation of the resulting proof

This example prover can be immediately executed from the binary distribu-
tion of GAPT6, without installing any other extra dependencies. It will read the
problem from standard input, refute it, and then open the resulting proof in the
graphical user interface:

./gapt.sh instprover.scala <example.in

This usage of GAPT scripts is convenient for early prototyping. But should
our prototype develop into a larger project, we are not stuck with developing
it as a single file. Since GAPT is available as a Scala library from the JCenter
repository, it can be added as a dependency for another project by adding a
single line to its sbt build script. This way, we can seamlessly move from a small
prototype to a full-fledged separate project.

5 We use Sat4j as it is bundled with GAPT. To use another solver, it is enough to
replace Sat4j with Glucose or MiniSAT in the source code.

6 This example is included in the examples/scriptability directory in the binary
distribution of GAPT.
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import scala.collection.mutable

// Parse input
val sequent = Stream.continually(Console.in.readLine ()).

takeWhile(_ != null).map(_.trim). filter(_.nonEmpty ).
map(parseFormula ).map(univclosure(_)) ++: Sequent ()

// Transform into clause normal form
val (cnf , justifications , definitions) = structuralCNF(sequent ,

generateJustifications = true , propositional = false)

// Main loop
val done = mutable.Set[FOLClause ]()
val todo = mutable.Queue[FOLClause ](cnf.toSeq: _*)
while (Sat4j solve (done ++ todo) isDefined) {

val next = todo.dequeue ()
if (!done.contains(next)) for {

clause2 <- done
clause1 = FOLSubstitution(

rename(freeVariables(next), freeVariables(clause2 )))( next)
(atom1 ,index1) <- clause1.zipWithIndex.elements
(atom2 ,index2) <- clause2.zipWithIndex.elements
if !index2.sameSideAs(index1)
mgu <- syntacticMGU(atom1 , atom2)

} todo ++= Seq(mgu(clause1), mgu(clause2 ))
done += next

}
// Postprocessing
val instances = for (clause <- cnf) yield clause ->

(for { inst <- done ++ todo
subst <- syntacticMatching(

clause.toFormula , inst.toFormula)
} yield subst).toSet

val expansion = expansionProofFromInstances(
instances.toMap , sequent , justifications , definitions)

val Some(minimized) = minimalExpansionSequent(expansion , Sat4j)
val lkProof = ExpansionProofToLK(minimized)

// Visualisation
prooftool(lkProof)

Fig. 1. instprover.scala: Instantiation-based first-order prover with graphical proof
output

p(0,y) & (p(x,f(y)) -> p(s(x),y))
(p(x,c) -> q(x,g(x))) & (q(x,y) -> r(x)) & -r(s(s(s(s(0)))))

Fig. 2. example.in: Example input for the prover from Figure 1
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Fig. 3. Graphical visualisation of the resulting proof using the expansion tree viewer.

4 Applications

We have used GAPT primarily as a basis for prototype implementations of newly
developed algorithms. We briefly review these applications here, highlighting the
aspects of the GAPT-system which are of particular relevance.

Cut elimination by resolution (CERES). This is a method for cut elimina-
tion which is based on using a resolution theorem prover to generate a skele-
ton structure for a cut-free proof. This method has been applied to show that
Fürstenberg’s topological proof of the infinity of primes can be transformed into
Euclid’s original proof by cut elimination [2]. The CERES method depends heav-
ily on several non-trivial proof transformation like the Skolemisation of proofs
with cut or the combination of a resolution refutation of a clause set C with
cut-free sequent calculus proofs ψC of Γ ` ∆ ◦ C for C ∈ C to a sequent cal-
culus proof with only atomic cuts. To analyse the results produced by CERES,
expansion tree extraction and visualisation is used.

Cut introduction. GAPT has been used as basis for the implementation of a
method for cut introduction (i.e., lemma generation) [11,8,9]. This method is
based on a structural analysis of expansion trees using tree grammars. It relies
heavily on the flexible use of expansion trees and on the interface to MaxSAT-
solvers which are used to compute minimal tree grammars. Hence GAPT also
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contains an implementation of some tree grammars. As database for the testing
and evaluation this algorithm, the TSTP and the reliable Prover9 import have
proved indispensable.

Inductive theorem proving based on tree grammars. Currently, GAPT is used for
a prototype implementation of an inductive theorem prover based on the method
described in [6]. This being a generalisation of the method for cut introduction
to induction, it also benefits from the availability of proof transformations and
the flexible handling of expansion trees and tree grammars as described above.
In addition, for this application, the use of resolution provers and SMT-solvers
for generating instance proofs is necessary.

Teaching. GAPT is used, along with several automated theorem provers, in a
graduate course on automated deduction taught at the Vienna University of
Technology. The students are asked to perform various computational exper-
iments relating run-time, size of output, and other parameters of various al-
gorithms. For example: naive clause form transformation by distributivity vs.
Tseitin transformation, a SAT-solver on sequences of propositional tautologies
of varying proof complexity, a first-order resolution prover vs. a SAT-solver on
a propositional clause set and on ground instances of a first-order clause set.
Such comparisons crucially rely on having a uniform framework with interfaces
to different automated reasoning systems.

5 Future Work and Conclusion

We are currently implementing a tactics language for the more convenient input
of formal proofs which will make it into the next release. A built-in superposition-
based theorem prover will be included in the next release as well, enabling more
efficient proof replay without external dependencies. As further future work, we
plan to implement support for a wider variety of different proof calculi (e.g., nat-
ural deduction) and logics (e.g., intuitionistic logic). In addition, we are looking
to extend the existing support for multiple uninterpreted base sorts to inter-
preted sorts such as integers and arrays, and interface them with the built-in
theories of SMT solvers. We will continue to use the system for the applications
described in Section 4.

The power of GAPT comes from the integration of a wide variety of different
systems (e.g. SAT-solvers, SMT-solvers, resolution and connection provers) and
the flexibility of combining them using a large number of standard algorithms
and transformations, all within one uniform framework. GAPT is developed in
Scala which, on the one hand, permits elegant functional code close to mathe-
matical definitions, but on the other hand also provides access to the whole Java
library, including, e.g., Swing, on which prooftool is based. GAPT has already
proved very useful for the development of and experiments with new algorithms
in computational proof theory and automated deduction and we are convinced
that it will continue to do so.
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While GAPT already interfaces with a large number of external provers, we
always try to expand our support to other provers. As next steps we plan to add
support for the DRUP format used by SAT solvers, and to add proof import
for first-order provers that employ inferences rules that go beyond the standard
resolution calculus, such as the splitting rule in SPASS. Adding support for a new
prover takes a considerable amount of work, ranging from minute details such as
recognizing different headers in the output files to supporting new proof systems.
We hope that GAPT will benefit from further efforts in the standardisation of
proof output.
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