
Integrating Theories into
Inference Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Martin Riener
Matrikelnummer 9927068

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuer: Univ.-Prof. Dr. Phil. Alexander Leitsch

Wien, 22.03.2011

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen und

Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit einschließlich Tabellen, Karten

und Abbildungen, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen

sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Martin Riener

Abstract

The axiomatization of arithmetical properties in theorem proving creates many straightforward

inference steps. In analyzing mathematical proofs with the CERES (Cut-Elimination by Resolution)

system, it is convenient to hide these inferences. The central topic of the thesis is the extension of

the CERES method to allow reasoning modulo equational theories. For this, the inference systems

of Sequent Calculus modulo and Extended Narrowing and Resolution replace their non-equational

counterparts in CERES. The method is illustrated by examples comparing inference modulo the theory

of associativity and commutativity with unit element to inference in the empty theory.

Zusammenfassung

Die Axiomatisierung arithmetischer Gesetze im Bereich des automatischen Beweisens erzeugt

viele für Menschen intuitive Ableitungsschritte. Bei der Analyse mathematischer Beweise mit der

CERES Methode ist es von Vorteil, diese auszublenden. Diese Arbeit erweitert CERES um inte-

grierte Gleichungstheorien. Dazu wird die Methode auf einen Sequenzenkalkül modulo und einen

passenden Resolutionskalkül übertragen, welche beide dem Prinzip der Deduction Modulo entstam-

men. Als laufendes Beispiel wird die Theorie modulo kommutativer Monoide verwendet und mit der

ursprünglichen Methode verglichen.

Dedication

First of all I am greatly indebted to Prof. Leitsch for his continuous support and patience during the last

year. He has the rare ability to plant ideas in one’s mind which grow to many insights over time, such that

in the end those things seemed as simple to me as they were to him all the time.

Many thanks also go to Tsvetan Dunchev, Tomer Libal, Mikheil Rukhaia and Daniel Weller, the PhD

students who kindly shared their room with me and listened to my thoughts while giving me input on

them.

Due to the recommendations from my friends Mani Esmaeili, Stoiko Ivanov and Tamàs Schmidt, my

talks and the poster turned out to be drastically less confusing. Their emotional support was invaluable

when I was once again frustrated over some details of a proof not working out.

At last, my gratitude goes to my sister Ingrid and to my parents Christine and Alfons Riener, who

supported me during the last years – financially as well as mentally. Thanks that you’ve been there for

me.

Contents

Contents iv

1 Introduction 1

2 Equational Unification 2
2.1 Overview . 2

2.2 Definition over Universal Algebras . 2

2.3 Semantics . 3

2.4 Proof Systems . 4

2.5 Unification . 6

3 AC and ACU Unification 8
3.1 Overview . 8

3.2 Deciding the word problem for AC and ACU . 8

3.3 Diophantine Equations . 9

3.4 Semantic AC and ACU unification . 14

3.5 Sets of equations . 19

4 Deduction Modulo 24
4.1 Deduction Modulo . 24

4.2 Sequent Calculus modulo . 25

4.3 Extended Narrowing and Resolution . 28

4.4 Cut-Elimination . 29

5 Cut-elimination Modulo 32
5.1 CERES . 32

5.2 CERES modulo . 33

6 Implementation and Experiments 49
6.1 Overview . 49

6.2 Examples and Comparison to CERES . 49

iv

6.3 Implementation Details . 50

7 Summary and Future Work 53

Appendix 54
Listings . 54

Fibonacci Example . 57

Notation 67

List of Tables 67

List of Figures 68

Bibliography 69

CHAPTER 1

Introduction

Logic is like the sword – those who appeal to it shall perish by it.
Samuel Butler

The original application of reductive cut-elimination was in the proof of Gentzen’s Hauptsatz where it

was used to show that first order predicate logic is complete [Gen35]. It also has close relations to Craig’s

Interpolation Theorem and Herbrand’s Theorem [Bus98, TS00]. In the context of analyzing mathemati-

cal proofs, a faster cut-elimination method named CERES (Cut-Elimination by Resolution) [BL00] was

developed which in contrast to the local proof rewriting method applied during reductive cut-elimination

uses the resolution principle to remove cuts. The characteristic clause set extracted during the proof

transformation provides additional insight into the mathematical arguments used in the proof [BHL�08].

Nonetheless parts of the theory like the equational laws of associativity and commutativity needed for

a proof are applied in a - for humans - quite intuitive way. In order to hide these steps from both the

proof itself and the characteristic clause set, the aim of this thesis is to formulate CERES for a sequent

calculus with an integrated equational theory. The framework of deduction modulo [DHK03] provides

such a sequent calculus, also has a cut-elimination theorem and a corresponding natural deduction and

resolution calculus. Since some of the existing proofs analyzed with CERES use associative-commutative

operations which have a unit element, the theory of commutative monoids is used for experiments.

In chapters two and three we will present the notion of equational theories in general and that of

associative-commutative ones with and without unit element. Chapter four then gives the notions of

deduction modulo, whereas the central part formalizing CERES modulo equational theories is contained

in chapter five. The remaining chapters six and seven provide a discussion of the results. In the appendix

there is also an overview of notations used during the text.

1

CHAPTER 2

Equational Unification

2.1 Overview

As regards the proposition that three is equal to two and one, which you adduce, Sir, as an example of

intuitive knowledge, my comment is that it is simply the definition of the term three; for the simplest

definitions of numbers are formed in this manner- two is one and one, three is two and one, four is three

and one, and so on.
Gottfried W Leibniz

Equational unification is a generalization of syntactic unification (first explained for the Resolution

method [Rob65], an exhaustive presentation can be found in [Kni89,BS01]), which searches for a substi-

tution to make two terms syntactically equal. Here, terms need to be equal modulo a set of equations on

terms. Two equivalent characterizations of equality modulo theories are common, one defining a seman-

tics which requires equal terms to evaluate to the same element in the domain and a proof system which

uses instantiation and substitution of equals as rules.

2.2 Definition over Universal Algebras

Syntactically, terms are constructed over a signature and a set of variables. The signature � contains

function symbols (usually denoted by f; g; : : :) with their respective arity; nullary function symbols are

also called constants (often named c; d; : : :). Variables (usually denoted by u; v; : : :) are held in a separate

set V . The actual terms T p�; V q are defined inductively: variables and constants are terms; if t1; : : : ; tn
are terms and f is a function symbol of arity n, then fpt1; : : : ; tnq is a term.

For the replacement of variables by terms, we introduce the notion of substitution.

Definition 2.2.1. A substitution � : V ÞÑ T p�; V q is a mapping from variables to terms, where only

finitely many variables are not mapped to themselves. Applying � to a term t, denoted by t� is done

recursively:

2

t� �

$''&
''%

�pxq if t � x

c if t � c

fpt1�; : : : ; tn�q if t � fpt1; : : : ; tnq

The empty substitution i.e. the identity function is denoted by ".

Application of substitution is written in postfix notation. We also note that substitutions are not

commutative.

2.3 Semantics

The semantics given here are in the spirit of the one defined in [BN98], although the ones given in

[Pla93, BS81] are very similar. A �-algebra A is a structure xA; �y containing the carrier set A and an

evaluation function � mapping each function symbol f P � of arity n to a function fA from An ÞÑ A.

This alone is not enough to evaluate a function, but similar to predicate logic, given a variable assignment

 : V ÞÑ A, terms can be evaluated recursively. In the following definitions no particular assignment is

mentioned, instead only propositions over the equality of functions are made.

There are some simple means of creating new algebras from a given one:

Definition 2.3.1 (Subalgebra). Let xA; �y be a �-algebra. Then the structure xB; �y with B � A is a

subalgebra (over the signature �) iff for all f P �, fA � fB.

Definition 2.3.2 (Homomorphism). Let A and B be two �-algebras with carrier sets A and B and let �

be function from A ÞÑ B. Then � is a homomorphism iff it is compatible with all functions f P �, i.e.

�pfApa1; : : : ; anqq � fBp�pa1q; : : : ; �panqq.

Definition 2.3.3 (Direct Product). IfA1; : : : ;Ak are�-algebras with their respective carrier setsA1; : : : ; Ak,

then the algebra P with P � A1� : : :�Ak is their direct product, where each function symbol f of arity

n is interpreted component wise, that is

�ipf
Ppp1; : : : ; pnqq � fAip�1pp1q; : : : ; �nppnqq

where �i denotes the projection function returning the i-th element of an n-tuple.

Now we can also describe a model of an equational theory by means of homomorphisms:

Definition 2.3.4 (Models of equations). The equation s � t holds in the �-algebra A with carrier set A,

in symbols A |ù s � t iff for all homomorphisms � : T p�; V q ÞÑ A from the terms to A, both terms are

mapped to the same function i.e. �psq � �ptq.

If E is a set of equations, then the �-algebra A is a model of E iff for each equation e P E, A |ù e.

The class of all models of E is called the �-variety of E, in symbols VpEq.

3

Definition 2.3.5 (Semantic consequence). The equality s � t is called a semantic consequence of a set

of equations E (E |ù s � t) iff for all models M P VpEq the equality s � t holds in M.

The equality relation �E induced by the equational theory E is defined such that for terms s; t P

T p�; V q, the relation s �E t holds iff the equation is a semantic consequence of the theory i.e. E |ù s �

t.

Varieties are closed under the operations described above. They also give rise to the syntactic rules of

replacement and substitution.

Theorem 2.3.6 (Birkhoff’s Theorem [Bir35]). Let E be a set of equations. Then the class of varieties

VpEq is closed under the creation of subalgebras and direct products as well as under homomorphisms.

2.4 Proof Systems

There are also proof systems for equational logic, for instance the ones in [Bir35, Lei94, Pla93, BN98,

GS93]. The rules given in figure 2.1 are taken from [Lei94, BN98] but have Leibniz’ rule of substitution

of equals by equals instead of the replacement rule: We have two introduction rules, the first one realizing

the axiom of reflexivity, the other one allowing equalities from a given set E as axioms. Apart from the

mentioned Leibniz rule, the instantiation rule applies a substitution to an equality. Since Leibniz’ rule is

a generalization of replacement, the rules of symmetry and transitivity from [Lei94, BN98] are derivable

(see figure 2.2). Now a set of equations E proves the equality of the terms s and t, denoted by $E s � t,

if there is a sequence of rule applications deriving s � t from the axioms.

s � t P E
$Es � t

Equational Axiom

$Et � t

Reflexivity

$Es � t

$Es� � t�

Instantiation

$ET rus $Eu � v

$ET rvs

Leibniz

Figure 2.1: Rules of equational inference

Some commonly used equational axioms are associativity (A), commutativity (C), distributivity (D),

idempotence (I) and the existence of a unit (U) or an inverse (�1) element. Also a combination of these

axioms is often desired, since for instance A Y U describes a monoid. For easier notation, the set union

symbol is dropped, so ACU�1 stands for the theory of abelian groups. In case of multiple function

symbols, the relevant symbol is added as a subscript.

As an example of a derivation, in the theory AC, the equation fpa; fpb; cqq �AC fpfpb; aq; cq has

the proof given in figure 2.4.

4

$Es � s $Es � t
Leibniz

$Et � s

Reflexivity

$Et � u $Eu � v
Leibniz

$Et � v

Transitivity

$Efps1; : : : ; snq � fps1; : : : ; snq $Es1 � t1
Leibniz

$Efps1; : : : ; snq � fpt1; s2 : : : ; snq $Esi � ti

$Efps1; : : : ; snq � fpt1; : : : ; ti; si�1; snq $Esn � tn
Leibniz

$Efps1; : : : ; snq � fpt1; : : : ; tnq

Replacement

Figure 2.2: Derivation of Reflexivity and Transitivity in Equational Reasoning

; = tu If = tfpx; xq � xu
Af = tfpx; py; zqq � fpfpx; yq; zqu Df;g = tfpgpx; yq; zq � gpfpx; zq; fpy; zqqu
Cf = tfpx; yq � fpy; xqu Uf = tfpx; eq � xu
�1

f = tfpx; x�1q � eu

Figure 2.3: The equational axioms for Associativity, Commutativity, Idempotence, Distributivity, Unit
Element and Inverse Element.

AC $Efpa; fpb; cqq � fpa; fpb; cqq

AC $Efpx; fpy; zqq � fpfpx; yq; zqq
Inst

AC $Efpa; fpb; cqq � fpfpa; bq; cqq
Leibniz

AC $Efpa; fpb; cqq � fpfpa; bq; cqq

AC $Efpx; yq � fpy; xq
Inst

AC $Efpa; bq � fpb; aq
Leibniz

AC $Efpa; fpb; cqq � fpfpb; aq; cqq

Figure 2.4: Proof of fpa; fpb; cqq � fpfpb; aq; cq

In [Bir35], also the equivalence of semantic models of equations and their derivability via reflexivity,

symmetry, transitivity, replacement and substitution is shown.

Theorem 2.4.1 (Completeness of equational inference [Bir35]). If E is an equational theory and s; t P

T p�; V q then s �E t iff it is derivable i.e. $E s � t.

Also equalities are easily expressible in predicate logic with equality, where the models of the formula

@x1ps1 � t1q ^ : : :^ @xnpsn � tnq for the equations si � ti P E with xi being the free variables of si
and ti correspond to the models of the equation s �E t which only have the additional fixed definition of

the equality predicate.

5

2.5 Unification

There are two decision problems for equations we often study: the word problem and the unification

problem. The former is the question if, given an equation s ?
� t, all substitution instances are equal

modulo the theory E i.e. s� �E t� for all substitutions �. This can be solved by the methods presented

above.

The latter asks whether for the set of equations tsi
?
� ti|1 ¤ nu there exists a substitution � such that

si� �E ti�. The generalization to sets is necessary, since even in the empty theory, every equation in

tx
?
� a; x

?
� bu has a unifier, but the whole set does not1. For unification problems, we are also interested

in the set of all possible substitutions, not only in unifiability. A shorter name for unification modulo the

theory E is E-unification.

Now we are ready to define the unifier of two terms. Since some unifiers are contained in others, it is

also of advantage to introduce a notion of generality and only look at the most general unifiers.

Definition 2.5.1 (Unifier). If P � tsi
?
� ti|1 ¤ i ¤ nu is a unification problem and � is a substitution

such that si� �E ti� for 1 ¤ i ¤ n, then � is called a unifier of P .

Definition 2.5.2 (Generality [BN98, p. 255]). A substitution � is more general than the substitution �

modulo the equational theory E on a set X , written � ÌX
E � , if there exists a substitution � such that

x� �E x�� for all variables x P X .

The restriction to a set X of variables is introduced, because usually only the variables in the unifica-

tion problem at hand matter. If we omit X we thus assume X to contain only those variables.

The generality relation has the properties of reflexivity and transitivity and is therefore a quasi-order.

Of special note is that it allows incomparable elements to be present. In the theory of commutativity, for

instance, the equation fpx; yq ?
� fpa; bq has the two unifiers �1 � tx Ð[a; y Ð [bu and �2 � tx Ð[

b; y Ð[au, but neither �1 ÌC �2 nor �2 ÌC �1.

Definition 2.5.3 (minimal complete set of unifiers [BN98, p. 256]). Given an E-unification problem P ,

a set of substitution C is complete, if every � P C is an E-unifier of P and for each E-unifier � of P there

exists a unifier � P C such that � ÌE � . A complete set C of unifiers is minimal, if for all �; � P C where

� ÌE � holds, also � � � . If a minimal complete set of unifiers contains only one element �, then � is

called most general unifier2.

Sometimes we also need a more fine-grained classification of equational theories. For this, we can

restrict the signature of the terms to be elementary, allow constants or look at general terms. Also the

cardinality of the minimal complete set of most general unifiers is a measure for the complexity of the

unification problem.

Definition 2.5.4.
1This cannot happen for word problems because they are universally quantified.
2Sometimes, the minimal complete set of unifiers is also called the set of most general unifiers.

6

• An elementary E-unification problem is only defined for terms containing function symbols and

constants from the signature of E.

• An E-unification with constants is only defined for terms over the signature of E and additional

constant symbols.

• A general E-unification problem does not restrict the signature of the terms.

Definition 2.5.5. An E-unification is of type zero, if there is no minimal complete set of unifiers (in

general). It is of unitary type, if there is at most one most general unifier. The type is finitary if the

cardinality of the complete minimal set of unifiers is finite and infinitary if the cardinality is infinite.

For its use in resolution based theorem proving, unitary unification is the most desirable one because

the only choice during the application of the resolution rule is that of the clauses and the complementary

literals to resolve over. Luckily syntactic unification (;-unification), is in this category.

The generalization of the resolution method to equational resolution [Plo72] nondeterministically

chooses an E-unifier of complementary literals during a resolution step. In an implementation this is

often approached by backtracking or lazy unification [God90], but both add complexity to the search for

a refutation. Since C, AC and ACU are finitary for the general unification problem, they create only a

bounded number of choice points, whereas infinitary theories like A3 need some finite representation for

the set, which further increases complexity.

For theories of type zero the notion of generality is no improvement to looking at all unifiers. This is

so because if there is no minimal complete set of unifiers, then for every unifier �, there is a more general

unifier � such that � ÌE �. An example for this is the equation fpx; fpy; xqq �AI fpx; fpz; xqq in the

theory AI .

A summary of the example theories can be found in figure 2.5, a far more detailed discussion also

giving results for the elementary and constant case can be found in [BN98, BS01].

Unification type Theory
zero AI

unitary ;

finitary C, AC, ACU
infinitary A

Figure 2.5: Examples of E-Unification types for the general unification problem

3Even very simple equations have no finite minimal complete set of unifiers in A. In an example from [Plo72] the equation
fpa; xq �A fpx; aq has the most general unifiers �n � txÐ [anu with n ¥ 1, but since each instance of the equation is ground,
no unifier is obsolete by generality.

7

CHAPTER 3

AC and ACU Unification

3.1 Overview

We toast the Lisp programmer who pens his thoughts within nests of parentheses.
Alan Perlis

Many equational theories in mathematics are associative and commutative; some examples are ad-

dition and multiplication over the natural numbers, set union and intersection, logical disjunction and

conjunction or the use as a representation of multisets. Before the name ACU became widely used, it

was also described as AC1 unification and unification over commutative monoids. Addition and multi-

plication over the positive natural numbers N� is an example of an AC theory without unit. Interestingly,

equalities over ACU are easier to solve than those over AC, but many algorithms are suitable for gener-

ating a complete minimal set of unifiers for both theories. For our purpose we want to replace syntactic

derivations (of which one of the main approaches is narrowing [BS01, Rub99, Rus10]) by a semantic

approach, so we will concentrate on the latter.

In the following chapters, f will denote the associative-commutative function symbol and e the unit

element.

3.2 Deciding the word problem for AC and ACU

The intuitive interpretation of associativity is that the nesting of f is not important. Commutativity means

that the order of the terms contained in a structure of fs does not matter. So basically, an f -term can be

seen as a multiset of its arguments. To compare the words s and t modulo associativity, rewriting modulo

the rule

fpt1; : : : ; fps1; : : : ; smq; : : : ; tnq ÝÑ fpt1; : : : ; s1; : : : ; sm; : : : ; tnq

allows to flatten s and t, such that their normal forms s1 and t1 only need to be checked for syntactic

equivalence [LC89]. To take commutativity into account, we can choose a total ordering � on terms and

sort the arguments of f in s1 and t1 such that in the resulting terms fps1; : : : ; snq and fpt1; : : : ; tmq, the

8

arguments are ascending with regard to�, i.e. si� sj and tk� tl for 1 ¤ i j ¤ n and 1 ¤ k l ¤ m.

A possible choice for� is a lexicographic path ordering induced by the alphabetic ordering of the logical

symbols, which is defined for instance in [DJ90]. The unit element can be handled by removing every

occurrence of e from the arguments after sorting.

It is also often useful to identify a (flattened) term by the multiset of its arguments, i.e. fpt1; : : : ; tmq

will be written as ttc1
1
; : : : ; tcnn u, where the ci denote the multiplicity if ti in the set. If it is unambiguous,

the terms can be concatenated as is commonly used in formal languages, so the former term will be

written as tc1
1
: : : tcnn .

3.3 Diophantine Equations

Since semantic AC- and ACU -unification solves linear diophantine equations as a subproblem, we need

to make a small intermission. Equations of polynomials over the integers were already studied by Dio-

phantus of Alexandria [Dio52] after whom they are named. A famous (general) diophantine equation is

an � bn � cn, also known as Fermat’s last theorem, which he conjectured to be unsolvable for different

a,b and c when n ¡ 2 but has been completely proven in the last twentieth century [Wei]. Arbitrary dio-

phantine equations also found a direct application to computability theory in the form of Hilbert’s tenth

problem [Hil00], which is the question for a recursive algorithm to decide whether a diophantine equa-

tion is solvable. Although the general problem was proven undecidable [Rob52, Dav53, DPR61, Mat70],

its restriction to linear equations is decidable. Many notions from linear algebra over the reals carry

over to equations over integers, but in contrast to xR;�; �y, the algebra xZ;�; �y is only a ring, not

a field. Solutions can still be expressed as a linear combination of basis vectors, but the number of

base vectors may be of exponential size in the number of variables [Lan89, Dom92]. Since the Gaus-

sian algorithm for the computation of a basis is not applicable, other algorithms had to be developed

[Lan89, CF89, For87, Con93, Dom91b].

In the following, we will make the basic definitions more precise keeping the presentation close

to [CF89]. Then we give an algorithm computing the basis of a linear diophantine equation and also one

for systems of equations.

Definition 3.3.1 (Linear Diophantine Equation). A linear diophantine equation is of the form

ņ

i�1

cixi � h

where ci P Z are constants and xi are variables over Z. An equations with h � 0 is called homogeneous

and inhomogeneous otherwise. A solution is a variable assignment for all xi such that the equation holds.

Diophantine equations can be elegantly written using the inner vector product. In our case, the original

equation has a left-hand side and a right-hand side with positive coefficients only, so often positive and

negative coefficients are written separately. Using the notation of p�; �q for the concatenation of � and �,

9

a solution is then a vector p�; �q such that a � � b � � h. Also a linear combination can be easily written

as
°n
i�i si vi.

As we are only interested in studying non-negative solutions, for the equation a x � b y � h, we

denote this set by Spa; b; hq and write Spa; bq in the homogeneous case.

Definition 3.3.2 (Solution). Let a x � b y � h be a linear diophantine equation with a ¡ 0 and b ¡ 0.

Then its set of (non-negative) solutions is defined as

Spa; b; hq � tp�; �q|a � � b � � h; p�; �q ¡ 0u

For homogeneous equations we define

Spa; bq � tp�; �q|a � � b � � 0; p�; �q ¡ 0u

By the lack of an additive and multiplicative inverse, the solutions only form a monoid which is

finitely generated from the minimal solutions with respect to pointwise ordering. [CF89]

Now we will formally define the basis of a diophantine equation and look at the minimal solutions

with regard to comparing vectors component-wise to see that they form a basis. Indeed, many algorithms

[CF89, Lan89] compute these minimal solutions to find a basis.

Definition 3.3.3 (Basis). A basis of a homogeneous diophantine equation is a smallest finite set1 t�1; : : : ; �nu

such that for every solution s P Spa; bq it is composable of a linear combination of basis vectors i.e. for

each s there exists �1; : : : ; �n such that s �
°n
i�1 �i �i.

Definition 3.3.4 (Pointwise ordering of vectors [CF89]). Let p�; �q and p�1; �1q be two vectors with |�| �

|�1| � n and |�| � |�1| � m and let¤ be the usual ordering on natural numbers. Then¤ can be extended

to a pointwise partial ordering on vectors:

p�; �q ¤ p�1; �1q iff �
i
¤ �1

i
and �

j
¤ �1

j
for all i P t1; : : : ; nu and j P t1; : : : ;mu

this ordering can be made strict by defining:

p�; �q p�1; �1q iff p�; �q ¤ p�1; �1q and �
i
 �1

i
or �

j
 �1

j
for some indices i and j:

Definition 3.3.5 (Minimal Solutions [CF89]). The set of minimal solutions of an equation a x� b y � h

is defined as the subset of ¤ minimal elements of Spa; b; hqzt0u as

Mpa; b; hq :� tx P Spa; b; hqzt0u| there exists no y P Spa; b; hqzt0u s.t. y ¤ xu

and for a homogeneous equation as

Mpa; bq :� tx P Spa; bqzt0u| there exists no y P Spa; bqzt0u s.t. y ¤ xu

1The basis is not necessarily unique.

10

Lemma 3.3.6.
The set Mpa; bq is a basis for the homogeneous linear diophantine equation a x� b y � 0.

The set of tm � s|m P Mpa; b; hq; s P Spa; bqu is a basis of the inhomogeneous linear diophantine

equation a x� b y � h.

Proof. given in [CF89] by showing that

1. Mpa; bq and Mpa; b; hq are finite

2. Spa; bq is the set of linear combinations of Mpa; bq

3. Spa; b; hq � tm� s|m PMpa; b; hq; s P Spa; bqu

One of the optimizations of [CF89] is the observation that variables with the same coefficient can be

grouped and instead of the sum of the single variables a fresh one is used.

Definition 3.3.7 (Injective companion). Given an equation

¸
iPI

ai � p

�paiq¸
l�1

xi;lq �
¸
jPJ

bj � p

�pbjq¸
k�1

yj;kq � 0

where the functions � : I ÞÑ N
� and � : J ÞÑ N

� return the number of variables grouped for each

element of an appropriate index set I � t1; : : : ; nu and J � t1; : : : ;mu, define its injective companion

as ¸
iPI

ai � xi �
¸
jPJ

bj � yj � c

.

The function � mapping pxi;l; yj;kq to p
°�paiq
l�1 xi;l;

°�pbjq
k�1 yj;kq for i P I; j P J then expresses the

relationship from the variables of the equation to that of the injective companion. Given the sum, the

values of the original variables can be easily enumerated. Since � allows a direct translation from the

original equation to the injective companion and back, the set of solutions and also the set of minimal

solutions of the equation can be calculated from the companion.

Lankford’s Algorithm

In [Lan89], an easily implementable algorithm was presented. Given an equation a x � b y � 0 with

|a| � n and |b| � m, it starts with px; yq � p0; 0q and systematically increasing each component as

long as it decreases the norm of the equation. If there is no possibility to increase a component without

decreasing the norm, the algorithm halts.

11

Definition 3.3.8 (Norm of a vector). Let v � p�; �q be a vector. Then we define its norm as

}v}a � a � � b �

.

Taking the identity matrix In�m, we assign the first n vectors to the set A and the remaining m

vectors to the set B.

We now inductively define the sets X ,P ,N and Z, where X will hold the newly generated vectors,

P and N will hold the vectors with positive and negative norm which are irreducible regarding to the

already found basis vectors Z. The initial values are:

X1=; P1 =A

Z1 =; N1=B

and given the sets of step k we compute those of step k � 1 as follows:

Xk�1=pA�Nkq Y pB � Pkq

Pk�1 =ts|s P Xk�1; }s} ¡ 0 and s irreducible relative to Zku

Nk�1=ts|s P Xk�1; }s} 0 and s irreducible relative to Zku

Zk�1 =Zk Y ts|s P Xk�1; }s} � 0u

A vector s is reducible with regard to Zk if and only if there exists a vector z P Zk such that z s.

The addition of sets is defined as A�B � ta� b|a P A; b P Bu.

The algorithm always terminates with the halting condition that both Pk and Nk are empty. Then the

set of minimal vectors with norm 0 i.e. Zk �Mpa; bq is the basis we were searching for.

As an example, take the equation 2x1 � x2 � 2y1 � 0. To refer to the intermediate results more

easily, we name the vectors v1 to v7 and give their norm and value in figure 3.1. We start by setting

A � P1 � tv1; v2u, B � N1 � tv3u and X1 � Z1 � ;. In step 2, we get X2 � tv4; v5u Y tv4; v5u �

tv4; v5u. Since no vector in X2 has positive norm, P2 � ; and because v5 is irreducible respective to Z1,

N2 � tv5u. The vector v4 has norm zero and thus Z2 � tv4u. In the final step, X3 � ;Ytv6; v7u. Since

v4 ¤ v6, v6 is reducible reducible to Z2, which means that P3 � N3 � ;. We get Z3 � Z2 Y tv7u and

have now calculated Mpa; bq � tp1; 0; 1q; p0; 2; 1qu.

step 1 step 2 step 3
name } } vector name } } vector name } } vector
v1 2 p1; 0; 0q v4 0 p1; 0; 1q v6 1 p1; 1; 1q
v2 1 p0; 1; 0q v5 �1 p0; 1; 1q v7 0 p0; 2; 1q
v3 �2 p0; 0; 1q

Figure 3.1: Overview of intermediary vectors in the calculation of the basis of 2x1 � x2 � 2y1 � 0

12

Systems of linear diophantine equations

In [BCD90] an algorithm for systems is given. Similar to [Lan89] and [CF89], the possible solutions are

enumerated by assigning each coefficient a distinct line of the identity matrix and constructing candidates

by adding one of the identity vectors to candidates from the previous step. In the case of one equation

a newly generated candidate is only accepted if its norm is decreasing. Given k systems, we also have

a k-tuple of norms, so it is not directly clear what decreasing means in this context. But when the

vector is interpreted geometrically, a natural measure emerges: given the system of equations ta1 � x �

0; : : : ; ak � x � 0u then let x be the vector to be modified, ej be the line of the identity matrix with

�jpxq � 1 and let dpxq be the vector of norms p}x}a1 ; : : : ; }x}akq . The vector x� ej is only kept, if its

vector of norms dpx � ejq is contained in the halfspace that contains the origin and which is delimited

by the affine hyperplane orthogonal to dpxq and containing the extremity of dpxq. This condition can be

captured as dpx � ejq 0.

Now we can again inductively compute the sets of candidates:
P1 =tej |1 ¤ j ¤ ku

Pn � 1=tv � e|v P Qn; dpvq � dpejq 0u for n ¥ 1

Bn =tv P Pn|dpvq � 0u

Qn =tv P PnzBn|@s P
�
l nBl; v ¡ su

The algorithm stops when Pn � ; and returns
�
l nBl as the basis.

The calculation can be seen as a dag, where edges go from each vertex representing v to the one

representing v�ej . If a vector v has distance n to an identity vector, it will also be contained in Pn. Then

two distinct paths leading to the same element occur only due to the fact that v � ei � ej � v � ej � ei.

We can easily exclude one of these versions to create a forest instead of a dag: let v �
°
iPI ei be a vector

in the graph, then only look at those vectors v � ej where j ¥ maxpIq. This means, if v is increased at

position j, then all positions i j will be fixed from then on.

As an example we calculate the basis of the equation set

x11 x12 x21 x22 x31 x32 x4

1 1 0 0 0 0 �1 � 0

0 0 1 1 0 0 �1 � 0

0 0 0 0 1 1 �1 � 0

since there are many common coefficients, we will solve its injective companion

x1 x2 x3 x4

1 0 0 �1 � 0

0 1 0 �1 � 0

0 0 1 �1 � 0

with x1 � x11 � x12, x2 � x21 � x22 and x3 � x31 � x32 as constraints.

Figure 3.2 shows the resulting forest, where each node is labeled by the vector v and its vector of

norms dpvq and the base node is marked blue.

13

The resulting basis consists only of the vector p1; 1; 1; 1q, but the basis of our original problem is

considerably larger:
x11 x12 x21 x22 x31 x32 x4 #

0 1 0 1 0 1 1 b1

0 1 0 1 1 0 1 b2

0 1 1 0 0 1 1 b3

0 1 1 0 1 0 1 b4

1 0 0 1 0 1 1 b5

1 0 0 1 1 0 1 b6

1 0 1 0 0 1 1 b7

1 0 1 0 1 0 1 b8

(1000)
(100)

(1001)
(0-1-1)

(0100)
(010)

(0101)
(-10-1)

(0010)
(001)

(0011)
(-1-10)

(0001)
(-1-1-1)

(1101)
(00-1)

(1011)
(0-10)

(1111)
(000)

(0111)
(-100)

Figure 3.2: Calculation of a basis via the algorithm of Boudet, Contejean and Devie

3.4 Semantic AC and ACU unification

The basic observation leading to semantic unification was that after AC-unification of a single equation,

the number of symbols in the terms of its lefthand- and righthand side must be the same, where constant

and function terms with a symbol different to f introduce exactly one term (namely themselves) and

variables introduce an arbitrary number of terms (in the case of AC at least one). This relationship can be

expressed as a linear diophantine equation, where the coefficients represent the number of occurrences of

a term and the variable the number of symbols introduced. It is possible to extract a candidate for a unifier

from the solution of an equation. Since the number of symbols alone does not sufficiently characterize a

unifier, a candidate can only be kept if assignments of multiple terms to the same variable can be unified.

14

Also an upper bound on the number of introduced symbols can be computed from the equation for a

unifier to be part of a complete minimal set of unifiers, which allows to check only finitely many sets.

The method was first explored in [Sti75, Sti81] and in parallel in [LS76], where the main difference

is that the first approach uses homogeneous diophantine equations and removes more invalid candidates

afterwards, whereas the latter one fixes the count of constants to one and solves an inhomogeneous equa-

tion. Termination of the general case was an unsolved problem for some time, until it was proven nine

years after the first algorithms were stated [Fag84].

Research afterwards was concerned with making the algorithm more effective, since both the calcula-

tion of the basis of a linear diophantine equation and the generation of a unifier from a set of basis vectors

is computationally expensive. Although the decision problem is in NP [KN92], calculation of the min-

imal set of unifiers is at most exponential2 [Pot91]. A lot of effort went into solving linear diophantine

equations more effectively [For87, Lan89]. Some approaches tackled the complexity by incrementally

generating unifiers [Con93, LC89] and by reducing some common cases to ones which have a canonical

basis, thereby circumventing the need to generate it by an algorithm [LC89].

Much energy was also put into solving systems of equations [AK92, BCD90] which was not only

done for performance reasons but also because in contrast to ;-unification, a most general unifier of

a set of equations can not always be composed of the most general unifiers for each equation in the

set. As a simple example take the problem tax
?
� by; by

?
� czu which has the most general unifier

txÐ[bc; y Ð[ac; z Ð[abu, but the single equation ax ?
� by has the most general unifier txÐ[b; y Ð[au,

in which no variable can be substituted anymore.

Another way to reduce complexity is the restriction to AC-matching [Eke93] i.e. solving only prob-

lems, where the left-hand side of each equation is a variable.

Complexity results

A concise summary of the complexity results is given in [BS01]:

Deciding the general unification problem and the one with constants is NP-complete for both AC and

ACU [KN92]. The elementary unification problem for ACU has a trivial solution mapping each variable

to the unit e and elementary AC unification takes polynomial time [Dom91a].

theory elementary constants general
AC PTIME NPTIME NPTIME

ACU CONSTANT NPTIME NPTIME

Table 3.1: Complexity of the unification problems for AC and ACU

2The author could not find a proof that the problem of finding a minimal complete set of unifiers is harder than NP. We know
that all algorithms using the basis are exponential since the number of bases may be exponential to the number of coefficients of a
problem. Since the unification problem is an existential statement, it is quite possible that finding a minimal solution is in NP but
that finding all minimal ones is harder.

15

theory elementary constants general
AC ! ! !

ACU 1 ! !

Table 3.2: Unification type of AC- and ACU-unification

Stickel’s Algorithm

Since many algorithms, including the one implemented for this thesis, extend Stickel’s Algorithm, it will

be given in more detail. The general unification algorithm uses a specialized variant for the variable-only

case, so we define some additional notations and turn our attention the elementary case first:

Definition 3.4.1 (Value of a solution w.r.t. its equation). Let p�; �q be a solution of the equation c x �

d y � 0 with c ¥ 0 and d ¥ 0. Then its value is defined as

valp�; �q � c � � d �

.

Elementary Case

Given a unification problem s
?
� t with s � txc1

1
; : : : ; xcnn u and t � tyd1

1
: : : ydmm u, calculate the most

general unifiers in the following steps:

1. Translate the terms to a diophantine equation: the multiset notation is already very close to the

equation, since we just take each variable times its multiplicity and sum the products for the left-

hand and the right-hand side. For each logical variable x we denote the integer variable (counting

the symbols introduced by the corresponding logical variable) in the diophantine equation by x1,

the general form can be given as:

x11c1 � : : :� x
1
kck � y

1
1d1 � : : :� y

1
ldl � 0

.

2. Remove common occurrences of terms: we can simplify the equation if a variable appears on both

sides of the formula by transforming x1ici�yjdj to xipci�djq for all indices i; j such that xi � yj .

The paper introduces this as a preprocessing step on the term level because for the general case,

different fresh variables are introduced for the same symbol which prevent the simplification of the

diophantine equation. It can also happen, that after simplification, there are no more positive or

negative coefficients. Then the equation has only the trivial solution assigning zero to all variables,

which does not have a corresponding term in AC, but this solution is dropped during the next step.

The equation after this transformation step has possibly less summands and thus is:

16

x11c1 � : : :� x
1
ncn � y

1
1d1 � : : :� y

1
mdm � 0

.

with m ¤ k and n ¤ l.

3. Find the basis t�1; : : : ; �lu of the linear diophantine equation and assign each basis vector bi a

fresh logical variable zi.

4. Calculate the upper bound for the value of a solution which describes a minimal unifier. Let |c| � n

and |d| � m, then

boundpc; dq � maxpn;mq �maxplcmpci; djqq

with i P t1; : : : ; nu and j P t1; : : : ;mu is such a bound [Sti81], which is relatively generous and

can be refined, but for the purpose of proving the calculation’s finiteness, it suffices.

5. Find all non-negative candidate solutions of the diophantine equation by summing all subsets of

basis vectors. In the case of AC remove every solution with a component equal to zero since it

would require to assign no symbol to a variable; in ACU the unit element will be assigned in step

7.

6. Iterate the list of candidates in ascending value and add only those to the candidates, whose value

does not surpass the bound and which are no linear combination of the candidates already selected.

To make this more formal, let tv1; : : : ; vku be the sorted set of solutions, then S0 � ;. Given a set

Si�1 of found solutions, then Si with i ¤ k is defined as follows:3

Si �

$''&
''%

Si�1 Y tviu if valpviq ¤ boundpc; dq and

there exists no �1; : : : ; �i�1 P N s.t. vi � �1v1 � : : :� �vi�1

Si�1 otherwise

Then define the set of checked solutions S � Sk.

7. For every checked solution s P S with the linear combination of s �
°
iPI �i over the index set

I � t1; : : : ; lu, generate a new unifier in the following way: substitute xp by a the term represented

by the multiset tz
�pp�iq

i |i P Iu, with p P t1; : : : ; nu where �pp�q again denotes the projection of a

vector to its pth element. In the same way, substitute yq by a the term represented by tz
�qp�iq

i |i P Iu,

with p P tn� 1; : : : ; n�mu. In the case of ACU , when the term is represented by the empty set,

assign the unit e.

3For notational purposes, the left out elements were taken into the linear combination. This makes no difference, since if
v �

°
iPI �iui for some index set I of non-composable vectors ui, and w � �v �

°
jPJ �juj for some index set J then it can

also be composed without v since w � �
°
iPI �iui�

°
jPJ �juj . An implementation will certainly only try the non-composable

candidates.

17

8. As a somewhat cosmetical step, we can reuse removed variables: when a unifier � assigns a variable

x of the original term exactly one basis variable z, we then can rename z to x since x is not a

variable in the domain of �. Thus by replacing � by �1 � �:tzi Ð[xu, the finite representation

of the unifier is shorter. As mentioned, the saving is not substantial because for the purpose of

resolution, variants of the clauses with fresh variables will be produced before trying to unify them.

On the other hand, for a human reader apart from having shorter substitutions, it is much easier to

track a variable through a series of resolution steps.

As an example, we solve the unification problem of fpuvxxxyq ?
� fpvvxyyq. After dropping the

common terms, we can solve the simpler problem fpuxxq
?
� fpvyq. The corresponding diophantine

equation is u1�2x1�v1�y1 � 0. We calculate the upper bound of values asmaxp2; 2q�maxp1; 1; 2; 2q �

4. The basis for it is given in table 3.3 and the non-negative solutions in table 3.4.

u1 x1 v1 y1 variable
1 0 1 0 z1
1 0 0 1 z2
0 1 1 1 z3

Table 3.3: Bases of the diophantine equation u1 � 2x1 � v1 � y1 � 0

u1 x1 v1 y1 valpvq variables
1 1 2 1 3 z1 � z3
1 1 1 2 3 z2 � z3
2 1 2 2 4 z1 � z2 � z3

Table 3.4: Positive solutions to the diophantine equation u1 � 2x1 � v1 � y1 � 0

Since the three solutions are mutually linearly independent, all three of them generate a different mgu:

• �1 � tu ÞÑ z1; x ÞÑ z3; v ÞÑ fpz1z3q; y ÞÑ z3u

�1 can be simplified to tv ÞÑ fpuxq; y ÞÑ xu

• �2 � tu ÞÑ z2; x ÞÑ z3; v ÞÑ z3; y ÞÑ fpz2z3qu

�2 can be simplified to tv ÞÑ x; y ÞÑ fpuxqu

• �3 � tu ÞÑ fpz1; z2q; x ÞÑ z3; v ÞÑ fpz1z3q; y ÞÑ fpz2z3qu

�3 can be simplified to tu ÞÑ fpz1; z2q; v ÞÑ fpz1xq; y ÞÑ fpz2xu.

The minimal complete set of unifiers is then t�1; �2; �3u.

18

General Case

For the general unification problem, we generalize a given term by replacing every constant and function

term starting with a symbol different from f by a fresh variable vi. Since we later want to specialize

our unifiers again, we remember the replacement in the substitution �, which assigns every variable

vi the term it replaced. In the next step, we then solve the elementary unification problem to get a

minimal complete set of unifiers UE � t�1; : : : ; �ku. Now each substitution � P UE may map one of

the abstraction variables vi to a different term than � does. Only if those terms can be unified, we can

generate a most general unifier for the general problem. More formally, from an mgu � P UE and the

abstraction substitution �, we merge them to the substitution4 ��;�:

��;�pxq �

$''''&
''''%

t if �pxq � x; �pxq � t

t if �pxq � t; �pxq � x

s� if �pxq � s; �pxq � t; s �AC t; D� s.t. s� � t�

undefined otherwise

Then define the minimal complete set of unifiers UG � t��;�|� P UE ; ��;� defined on all variablesu. It

should be mentioned that ��;� is not unique because s and t may have multiple unifiers, so it can happen

that |UG| ¡ |UE |. This is the reason why it took some time to prove the termination of the algorithm for

the general case, which was accomplished in [Fag84].

3.5 Sets of equations

In [BCD90] there is a rule based approach similar to [MM82] adopted for equational theories. It separates

equations over mixed theories into smaller equations over pure ones.

Definition 3.5.1 (Pure and proper equations [BCD90]). Let Ei be the equational theories over the terms

T p�i; Xq with indices i P I and let the combined signature be � �
�
iPI �i. Then a term t P T p�; Xq is

pure in the theory Ei if it is a term over the signature of Ei i.e. t P T p�i; Xq. A non-pure term is called

heterogeneous. An equation s ?
� t is pure in the theory Ei if s and t are pure in Ei and it is heterogeneous

if at least one of the terms is heterogeneous. The equation s ?
� t is proper if either s or t is not a variable.

A problem set of equations

P � PV Y PH Y P0 Y : : :Y Pn

is then divided into subproblems, where
PV =tp|p P P; p is not properu

PH=tp|p P P; there is no Ei s.t. p is homogeneous in Eiu

Pi =tp|p P P; p is homogeneous in Ei for some i P Iu

4The function � is only a partial function and thus no real substitution. In the construction of UG we only keep the total
functions, so no harm is done.

19

The intention is that �0 � ta; b; c; : : : ; f; g; h; : : :u contains the theory-free function symbols and that

�i � t�iu for i ¥ 1 is the signature of AC symbols for different AC theories. Given an algorithm for

each theory Ei, this algorithm now combines them to solve problems over heterogeneous equations. For

this, the theories are required to be simple:

Definition 3.5.2 (Non-collapsing, regular and simple theory [BCD90]).
An equational theory E is non-collapsing if for no equation x ?

� t with x P V arptq and t R X .

An equational theory E is regular if for all equations s ?
� t also V arpsq � V arptq holds.

An equational theory E is simple if for all equations s ?
� t does not have a solution over E when t is a

proper subterm of s.

Definition 3.5.3 (Compound cycle). Let tx1
?
� s1; : : : ; xn

?
� snu be a set of equations with x1 P

V arpsnq and xi P V arpsi�1q for 2 ¤ i ¤ n. It is called a compound cycle, if for two indices k � l the

terms sk and sl are pure in different theories.

If a theory is simple, then it is also non-collapsing and regular [BCD90]. If all combined theories are

non-collapsing and regular then there are no compound cycles [Yel85, Tid86]. We will later use the fact

that there are no compound cycles and that the theory is non-collapsing.

The rules are defined in the form P �Q when from the set P we deduce the set Q by one of the rules.

If before the set of equations was S Y P then afterwards it will be S Y Q. Before we present the rules,

we need to define the occur-check relation and what a dag-solved form is.

Definition 3.5.4 (Occur-check relation [BCD90]). The occur-check relation is defined as x occ y if

there exists a chain of equations such that

x
?
� s1rx1s; x1 � s2rx2s; : : : ; xn � snrys

where at least one of the si is not a variable.

Definition 3.5.5 (dag-solved form [BCD90]). Q � tx1
?
� t1; : : : ; xn

?
� tnu is a dag-solved form of a

problem set of equations P if P and Q have the same solutions and for all i; j P t1; : : : ; nu the following

holds:

1. i � j implies xi � xj

2. xi occ xj in P implies i j

3. ti P X implies ti; xi P V arpP q and xi occurs nowhere else in Q

4. xi P V arpP q or there exists a j i s.t. xj P V arpP q and xj occ xi.

P is in dag-solved form, if P is a dag-solved form of P .

20

Now the rules are the following:

• VA (Variable Abstraction)

s
?
� t � Crx1; : : : ; xns � t; x1

?
� s1; : : : xn � sn

if s is heterogeneous andCrx1; : : : ; xns is a maximal pure term such that s � Crx1; : : : ; xnstx1 Ð[
s1; : : : xn Ð[snu and the xi are fresh variables.

This is the rule which separates a term into pure theories. The example given is that fpx; gpyq �

gpz�uqq
?
� twill be transformed to fpx; v1q � t; vi

?
� gpyq�gpz�uq. Then gpfpgpa; xq; xq; yq ?

�

t will be decomposed to gpv1; yq
?
� t; v1

?
� fpgpa; xq; xq and subsequently to gpv1; yq

?
� t; v1

?
�

fpv2; xq; v2
?
� gpa; xq.

• E-Res (E-Resolution)

Pi�Qi if Pi is not in dag-solved form, pure inEi andQ � tx1
?
� t1; : : : ; xn

?
� tnu is a dag solved

form of Pi.

This is the call to the solver in the pure theory. If there is no unifier, the rule fails. If there is more

than one unifier we have to look at all possible solutionsQi P unify_purepPiqwhere unify_pure

denotes the function returning the minimal complete set of unifiers for a pure theory. This is a don’t

know indeterminism which usually makes backtracking necessary.

• Clash

s
?
� t � fail

if s is a term with head symbol f and t is a term with head symbol g and f � g. This is only

possible because the theories are collapse-free.

• Merge

x
?
� s; x

?
� t � fail

if s is a term with head symbol f and t is a term with head symbol g and f and g belong to

signatures of different theories. This also is only possible because the theories are collapse-free.

• Combined Occur-Check

P � fail

if P contains a compound cycle.

• Var-Rep (Variable Replacement)

tx
?
� yu Y P � tx ?

� yu Y P txÐ [yu

if both x and y occur in P and y occurs in the original problem P 0 or x does not occur in P 0.

21

• Remove

tx
?
� su Y P � P

if x P XzV arpP 0q and x R V arpsq Y V arpP q

A variable assignment can be dropped if the variable is neither present in the original problem nor

in the rest of the equations looked upon and if the assignment does not violate the occurs check.

There are also two rules which are admissible and tailored to AC-unification:

• E-Rep

tx
?
� su Y P � tx ?

� su Y P txÐ[su

if P is a pure subproblem with no cycle in its occur-check graph and x P V arpP q and s R X .

• E-Cancel x� s ?
� x� t � s ?

� t

if � P �i with i ¥ 1 i.e. � is an AC operator. This is similar to Stickel’s algorithm which also

drops common variables.

Theorem 3.5.6 (Soundness and completeness of the rules [BCD90]). If from our set of equations P 0��S
we derive an S which is in dag-solved form, it is a most general unifier of P 0. Every most general unifier

S is derivable via �� in a finite number of steps.

If we now want to solve the equation set tgpu; u; uq � gpfpa; xq; fpb; yq; fpc; zqqu, then we can solve

it by the derivations given in figure 3.3. The steps done by variable abstraction, replacement and removal

are straightforward. The first E-resolution is in the empty theory and just consists of one decomposition

step. The second one will be solved by Stickel’s elementary algorithm, which solves exactly the system

of diophantine equations from chapter 3.3. Assigning the fresh variables z1; : : : ; z8 to the basis vectors,

one solution s can be found as b5 � b3 � b2 � p1; 2; 1; 2; 1; 2; 3q which can be found manually by the

following assumptions: we know that every component of the solutions must be ¥ 1. Also components

�1psq; �3psq and �5psq must be equal to 1, since they will be assigned to constants. Because these

constants are different, each component vector v with �1pvq � 1 must have �3pvq � 0 and �5pvq � 0

(and vice versa for the positions 3 and 5). Taking this into account, the solution b5�b3�b2 is soon found.

In the end, we have finally found one of our most general unifiers tu Ð[fpa; b; cq; x Ð[fpb; cq; y Ð[
fpa; cq; z Ð[fpa; bqu and leave it as an exercise to show it is the only one.

22

tgpu; u; uq � gpfpa; xq; fpb; yq; fpc; zqqu
�V A tgpu; u; uq � gpv1; v2; v3q; v1 � fpa; xq; v2 � fpb; yq; v3 � fpc; zqu
�E�Res tv1 � u; v2 � u; v3 � u; v1 � fpa; xq; v2 � fpb; yq; v3 � fpc; zqu
�V ar�Rep tv1 � u; v2 � u; v3 � u; u � fpa; xq; v2 � fpb; yq; v3 � fpc; zqu
�V ar�Rep tv1 � u; v2 � u; v3 � u; u � fpa; xq; u � fpb; yq; v3 � fpc; zqu
�V ar�Rep tv1 � u; v2 � u; v3 � u; u � fpa; xq; u � fpb; yq; u � fpc; zqu
�Remove tv2 � u; v3 � u; u � fpa; xq; u � fpb; yq; u � fpc; zqu
�Remove tv3 � u; u � fpa; xq; u � fpb; yq; u � fpc; zqu
�Remove tu � fpa; xq; u � fpb; yq; u � fpc; zqu
�V A tu � fpv4; xq; u � fpb; yq; u � fpc; zq; v4 � au
�V A tu � fpv4; xq; u � fpv5; yq; u � fpc; zq; v4 � a; v5 � bu
�V A tu � fpv4; xq; u � fpv5; yq; u � fpv6; zq; v4 � a; v5 � b; v6 � cu
�E�Res tu � fpz5; z3; z2q; v4 � z5; x � fpz3; z2q; v5 � z3; y � fpz5; z2q;

v6 � z2; z � fpz5; z3q;v4 � a; v5 � b; v6 � cu
�V ar�Rep tu � fpz5; z3; z2q; v4 � z5; x � fpz3; z2q; v5 � z3; y � fpz5; z2q;

v6 � z2; z � fpz5; z3q; z5 � a; v5 � b; v6 � cu
�Remove tu � fpz5; z3; z2q; x � fpz3; z2q; v5 � z3; y � fpz5; z2q; v6 � z2; z � fpz5; z3q; z5 � a; v5 � b; v6 � cu
�V ar�Rep tu � fpz5; z3; z2q; x � fpz3; z2q; v5 � z3; y � fpz5; z2q; v6 � z2; z � fpz5; z3q; z5 � a; z3 � b; v6 � cu
�Remove tu � fpz5; z3; z2q; x � fpz3; z2q; y � fpz5; z2q; v6 � z2; z � fpz5; z3q; z5 � a; z3 � b; v6 � cu
�V ar�Rep tu � fpz5; z3; z2q; x � fpz3; z2q; y � fpz5; z2q; v6 � z2; z � fpz5; z3q; z5 � a; z3 � b; z2 � cu
�Remove tu � fpz5; z3; z2q; x � fpz3; z2q; y � fpz5; z2q; z � fpz5; z3q; z5 � a; z3 � b; z2 � cu
�V ar�Rep tu � fpa; z3; z2q; x � fpz3; z2q; y � fpa; z2q; z � fpa; z3q; z5 � a; z3 � b; z2 � cu
�Remove tu � fpa; z3; z2q; x � fpz3; z2q; y � fpa; z2q; z � fpa; z3q; z3 � b; z2 � cu
�V ar�Rep tu � fpa; b; z2q; x � fpb; z2q; y � fpa; z2q; z � fpa; bq; z3 � b; z2 � cu
�Remove tu � fpa; b; z2q; x � fpb; z2q; y � fpa; z2q; z � fpa; bq; z2 � cu
�V ar�Rep tu � fpa; b; cq; x � fpb; cq; y � fpa; cq; z � fpa; bq; z2 � cu
�Remove tu � fpa; b; cq; x � fpb; cq; y � fpa; cq; z � fpa; bqu

Figure 3.3: Rule application to get a solution of tgpu; u; uq � gpfpa; xq; fpb; yq; fpc; zqqu

23

CHAPTER 4

Deduction Modulo

Sir Bedevere: “...Exactly. So, logically...”

Peasant: “If she weighed the same as a duck... she’s made of wood.”

Sir Bedevere: “And therefore...”

Peasant: “...A witch!”
Monty Python - Knights of the Holy Grail

4.1 Deduction Modulo

The original paper [DHK03] on deduction modulo presents both a sequent calculus and a resolution

calculus modulo an equational theory and rewrite rules on terms E and a rewriting system R on propo-

sitional formulas. In Sequent Calculus modulo, the rules of ordinary LK are changed, such that the

principal formula in an inference step only needs to be equal modulo the theory. To express resolution

modulo, equational resolution is complemented by the Extended Narrowing rule, which handles rewriting

of propositional formulas. The name of this calculus is Extended Narrowing and Resolution (ENAR).

To define the notion of equality modulo RE we stick close to Dowek’s [DHK03]:

Definition 4.1.1. A term rewrite rule is of the form l ÝÑ r, where l and r are terms and all variables of

r are also in l. An equational axiom is a pair of terms l � r.

A proposition rewrite rule is of the form l ÝÑ r where l and r are propositional formulas and

additionally l is atomic.

A class rewrite system RE consists of a set R of proposition rewrite rules and a set E of equational

axioms and rewrite rules on terms.

Definition 4.1.2 (R-rewriting). Given a rewrite systemR, P ÝÑR P 1 if P|! � �plq and P 1 � P r�prqs!

for a rule l ÝÑ r P R with a substitution � at position !.

Definition 4.1.3 (RE-rewriting). Given a rewrite system R, P ÝÑRE P
1 if P �E Q, Q|! � �plq and

P 1 �E Qr�prqs! for a rule l ÝÑ r P R with a substitution � at position !.

24

Definition 4.1.4 (RE-equality). If P �RE Q, then either P �E Q or P ÐÑ�
RE

Q (whereÐÑ�
RE

is the

reflexive, symmetric and transitive closure of ÝÑRE).

A common example given for a class rewrite system is the term equality E � ACU together with the

propositional rewrite system R � tx� y � 0 ÝÑ x � 0_ y � 0u. Then x� p0� yq � pa� xq �RE

x� y � 0_ x� a � 0 holds by the following derivation:

px� p0� yqq � pa� xq � 0

ÝÑE px� py � 0qq � pa� xq � 0

ÝÑE px� yq � pa� xq � 0

ÝÑR x� y � 0_ a� x � 0

ÝÑE x� y � 0_ x� a � 0

4.2 Sequent Calculus modulo

P $REQ

axiom introduction pP �RE Qq

K; l
R $RE

bottom introduction pR �RE Kq

�1; P $RE�1 �2 $REQ;�2

cut
�1;�2 $RE�1;�2

cut pP �RE Qq

�; Q1; Q2 $RE�
c; l

�; P $RE�

� $REQ1; Q2�
c; r

� $REP;�

contraction pP �RE Q1 �RE Q2q

� $RE�
w; l

�; P $RE�

� $RE� w; r
� $REP;�

weakening

Figure 4.1: Introduction- and structural rules of Sequent Calculus modulo, equivalent to [DHK03]

Sequent Calculus modulo is similar to Gentzen’s original Sequent Calculus, but active formulas only

need to be equal modulo �RE . The usual presentation is given in [DHK03], for our purposes, a calculus

with multiplicative binary rules and introduction rules without context is easier to handle. Instead of

having a permutation rule, sequents are defined as a pair of multisets of formulas, the antecedent and the

succedent separated by the derivation symbol $RE . The rules can be found in figure 4.2 and 4.2. We

25

�; P;Q $RE�
^; l

�; R $RE�

�1 $REP;�1 �2 $REQ;�2 ^; r
�1;�2 $RER;�1;�2

conjunction pR �RE P ^Qq

�1; P $RE�1 �2; Q $RE�2
_; l

�1;�2; R $RE�1;�2

� $REP;Q;� _; r
� $RER;�

disjunction pR �RE P _Qq

�1 $REP;�1 �2; Q $RE�2
ñ; l

�1;�2; R $RE�1;�2

�; P $REQ;� ñ; r
� $RER;�

implication pR �RE P ñ Qq

� $REP;� ; r
�; R $RE�

�; P $RE� ; r
� $RER;�

negation pR �RE P q

�; tt{xuQ $RE�
@; l

�; P $RE�

� $REtv{xuQ;�
@; r

� $REP;�

universal quantification pP �RE @x Q and v is a fresh free variable q

�; tv{xuQ $RE�
D; l

�; P $RE�

� $REtt{xuQ;�
D; r

� $REP;�

existential quantification pP �RE Dx Q and v is a fresh free variable q

Figure 4.2: Logical rules of Sequent Calculus modulo, equivalent to [DHK03]

write $RE P $RE Q if the sequent P $RE Q is provable via the rules. Similar to theory-free sequent

calculus, every rule has some context formulas which do not change and one or two auxiliary formulas in

the upper sequent(s) which are transformed to the principal formula in the lower sequent.

The translation to the Dowek et al.’s calculus can be done via a series of weakenings for every multi-

plicative and introduction rule. We also choose to introduce Eigenvariables instead of fresh constants in

the @; r and D; l rule.

Sometimes we will need to refer to a specific formula in a sequent or to a specific sequent in a proof.

These are called formula-occurrence and sequent-occurrence respectively. For the thesis, the occurrence

is sufficient, but if we wanted to change occurrences, we could define formula-occurrences as indices in

the antecedent or succedent set and define sequent-occurrences as a list of arcs to follow from the root of

the derivation tree.

For rewrite systems in which cut-elimination is possible, Dowek et. al. proved the equivalence to a

compatible theory in plain first order logic:

26

Definition 4.2.1. A theory T and a class rewrite system RE are compatible if P �RE Q implies T $

P ô Q and for every proposition P in T , we have $RE P .

Theorem 4.2.2. For every class rewrite system RE there exists a compatible theory T .

Proof. given in [DHK03]:

For each term rewrite rule l ÝÑ r and term equality l � r add the axiom

@x l � r

where x are the free variables in l and r. For each proposition rewrite rule l ÝÑ r add the axiom

@x lô r

where x are the free variables in l and r.

The above formulation is also possible in a sequent calculus without an equality predicate, but this one

is shorter. Please notice that our formulation of sequent calculus modulo does not automatically have an

equality predicate, since a paramodulation would need to be added to resolution. Modeling all equalities

in the underlying class rewrite system is not feasible, because adding rules changes some basic properties

of the system. For instance confluence and termination need to be proven anew, if they still hold.

Theorem 4.2.3 (equivalence of $ and $RE). For a given class rewrite system RE and a compatible

theory T ,

T ;� $ � if and only if � $RE �

Proof. Given in [DHK03].

The proof uses the fact that every rule in sequent calculus modulo can be described as an application

of the theory-free rule of sequent calculus with an added step which proves the theory equivalence of the

principal formula from the axioms in T . This leads also to an alternative formulation of sequent calculus

modulo, in which sequent calculus is only extended by the conversion rules given in figure 4.3. Amongst

others, this version is used in [Her10].

�; P $RE�
conv; l

�; Q $RE�

P �RE Q

� $REP;� conv; r
� $REQ;�

P �RE Q

Figure 4.3: Conversion rules to introduce deduction modulo into theory-free sequent calculus

27

4.3 Extended Narrowing and Resolution

ENAR is a constrained resolution calculus, which means that in contrast to eagerly applying the most

general unifier like in equational resolution [Plo72], a list of E-equalities, under which a clause set is

valid is kept. If there is a solution, solving the equalities yields at least one mgu which needs to be

applied to the resolution proof.

The usual clause set transformation rules are used to bring a formula into clause form; in the same step

skolemization is achieved. For this reason, the strongly quantified variables have to be added as a label to

a formula during the application of the rewrite rules given in figure 4.4. Because skolemization removes

weakly quantified variables, the label contains exactly the free variables of a formula. Notationally, the

label is added as superscript to the formula. Labels need to be taken taken into account during substitution

and for RE-equality; since a substitution � can change the free variables in a formula P l, the label l1 of

�P l1 must be updated to the free variables of �P . Similarly, for the labeled propositions P l to be E-

equivalent or to R-rewrite one the labeled proposition and Ql1 requires that the free variables do not

change, i.e. P �E Q or P ÝÑR Q must be fulfilled and l � l1.

Like in theory-free resolution, a literal is either an atomic proposition or a negated one and the sym-

bol � denotes the empty clauseset. We also introduce some shortcut notations: for a proposition P l, a set

of propositions and a set of sets of propositions �, the set unions YtP lu and �Yt u will be written

as ; P l and �; respectively.

�; p ;pP ^Qql q ÝÑ �,p ; P lq; p ;Qlq
�; p ;pP _Qql q ÝÑ �,p ; P l; Qlq
�; p ;pP ñ Qql q ÝÑ �,p ; p P ql; Qlq
�; p ;Kl q ÝÑ �,
�; p ;p@xP ql q ÝÑ �,p ; P l;xq, where x is a fresh variable
�; p ;pDxP qy1;:::;yn q ÝÑ �, p ; P txÐ[fpy1; : : : ; ynquy1;:::;ynq, where f is a fresh function symbol
�; p ;p pP ^Qqql q ÝÑ �,p ; p P ql; p Qqlq
�; p ;p pP _Qqql q ÝÑ �,p ; P ql; p ; Qql

�; p ;p pP ñ Qqql q ÝÑ �,p ; P l; p Qqlq
�; p ;p Kql q ÝÑ �

�; p ; P l q ÝÑ �,P l

�; p ; p@xP qy1;:::;yn q ÝÑ �,p ; p P txÐ[fpy1; : : : ; ynquqy1;:::;ynq, where f is a fresh function symbol
�; p ;pDxP ql q ÝÑ �p ; p P ql;xq, where x is a fresh variable

Figure 4.4: Clause set transformation rules for ENAR

Since deduction modulo allows to rewrite (propositional) formulas, there is no direct semantics of

ENAR like for equational resolution1. Instead equivalence to sequent calculus modulo is shown. The

confluence of the rewrite relation ÝÑRE is a necessary ingredient in the soundness and completeness

proofs of ENAR, which can be seen as the condition that rewriting is in some sense deterministic. In-

1There it is shown that it suffices to use the factor algebra on terms induced by the equality relation instead of the original term
algebra.

28

Resolution

tP1; : : : ; Pn; Q1; : : : ; QmurC1s t R1; : : : ; Rp; S1; : : : ; SqurC2s

tQ1; : : : ; Qm; S1; : : : ; SqurC1 Y C2 Y tP1 �E : : : �E Pn �E S1 �E : : : �E Squs

Extended Narrowing

U rC s
if l ÝÑ r P R, U |! atomic proposition and U 1 P clptU rrs!uq

U 1rC Y tU |! �E lus

Figure 4.5: Rules of ENAR

terestingly, termination is not necessary for the proofs, although non-terminating rewrite systems are not

well suited for automation.

Theorem 4.3.1 (ENAR Soundness). Let RE be a class rewrite system with a confluent RE-rewrite rela-

tion ÝÑRE . If there exists an ENAR refutation clp�; qr;s Þ ÞÝÑ
RE

�rC s with E-unifiable constraints C ,

then there exists a LK modulo proof of � $RE .

Proof. Given in [DHK03].

Theorem 4.3.2 (ENAR Completeness). LetRE be a class rewrite system with a confluentRE-rewrite re-

lationÝÑRE . If there exists a cut-free proof of � $RE , then there is an ENAR refutation clp�; qr;s Þ ÞÝÑ
RE

�rC s with E-unifiable constraints C .

Proof. Given in [DHK03].

There is also a stronger completeness result by Hermant:

Theorem 4.3.3 (ENAR soundness w.r.t cut-free sequent calculus modulo). Let RE be a class rewrite

system with a confluentRE-rewrite relationÝÑRE . If there exists an ENAR refutation clp�; qr;s Þ ÞÝÑ
RE

�rC s with E-unifiable constraints C , then there exists a cut-free LK modulo proof of � $RE .

Proof. Given in [Her10].

4.4 Cut-Elimination

The elimination of the cut rule in sequent calculus modulo cannot be shown in general, for instance one

could try to formalize naive set theory by rewrite rules and yield a proof where cut is not admissible:

[Dow01]

29

Naive set theory2 allows the description of sets via the comprehensions scheme

@xDy@zppz P yq ô P q

for arbitrary propositions P with the variables x and z being free in P and y not occurring in P . Its

skolemization is called the conversion scheme:

@x@zppz P fx;z;P pxqq ô P q

If we abstract f over the variables x, we can write fx;z;P pxq prettier as tz|P u. The conversion scheme

now has the form

@x@zpz Ptz|P u ô P q

It is also possible to restrict z to be an element of some set A in the conversion scheme:

@x@zpz Ptz P A|P u ô P q

A possible rewrite rule for restricted conversion would look like the following:

t P tz P A|P u ÝÑ A^ P rt{zs

Now, Crabbé’s proposition, a variant of Russel’s paradox [Rus96, §100]:

tx P A|x R xu P tx P A|x R xu

rewrites to

tx P A|x R xu P A^ tx P A|x R xu P tx P A|x R xu

which on one hand shows non-termination of the conversion rewrite rule and on the other hand gives rise

to a propositional sequent calculus modulo proof containing a cut which can not be eliminated. Let C

denote Crabbé’s proposition andB stand for tx P A|x R xu P A, then our concrete instance of conversion

can be formulated as the rule C ÝÑ B ^ C. Using this rule the following proof of $RE B has no

cut-free proof:

B $REB

A $REA
w; l

A;B $REA
 ; l

A;B; A $RE
^; l

A;A $RE
c; l

A $RE ; r
$RE A

^; l
B $REA

A $REA
w; l

A;B $REA
 ; l

A;B; A $RE
^; l

A;A $RE
c; l

A $RE
cut

B $RE ; r
$RE B

2Naive set theory is contradictory – we will use a variant of one of the best known counterexamples, Russel’s paradox, to show
the non-termination of the rewrite system. In [DW03] there is also a counterexample to cut-elimination for a confluent, terminating
rewrite system, but the proof uses the encoding of proofs in typed lambda calculus introduced in the paper, so we will stick to this
one.

30

For a similar proof in natural deduction, there are direct proofs [Ekm94, Hal83] of non-admissibility

of cut-elimination. In our case, we can easily check that there is no ENAR proof of B, since neither

the extended resolution rule nor the extended narrowing rule is applicable. Since ENAR corresponds to

the cut-free segment of sequent calculus modulo, there also exists no cut-free proof in sequent calculus

modulo.

For the rules of simple type theory, confluent and terminating quantifier free rewrite systems and

what is most important for this work, also for congruences on terms, G. Dowek and B. Werner proved

that cut-elimination holds. [DW03]

Resolution Proofs in Sequent Calculus modulo

A sequent containing only atomic formulas can be interpreted as a clause with the formulas in the an-

tecedent corresponding to the negative literals and those in the succedent corresponding to the positive

literals. The extended resolution rule can be simulated in sequent calculus modulo by contracting all the

positive and negative clauses and then introducing a cut over the remaining positive and negative literal.

Since the extended narrowing rule can rewrite to a non-atomic formula, the sequent needs to be brought

into clause form again. This is one of the causes why we restrict ourselves to equalities on terms only.

Another important detail is that we have to solve the final set of term constraints to yield a (most general)

unifier � which needs to be applied to the proof to gain an instantiation of the terms resolved over. This is

not yet a ground proof, since unification may leave free variables in the terms. We can solve this by intro-

ducing a substitution � which maps each variable to a fresh constant. Let � � �� the ground substitution,

then we can translate each resolution step as can be seen in figure 4.6. Since � is a mgu for the formulas

resolved over, the contractions are sound. Subsequently, � is a mgu for both positive and negative literals,

so the condition P1 �RE R1 holds and the cut rule is applicable.

tP1; : : : ; Pn; Q1; : : : ; QmurC1s t R1; : : : ; Rp; S1; : : : ; SqurC2s

tQ1; : : : ; Qm; S1; : : : ; SqurC1 Y C2 Y tP1 �E : : : Pn �E R1 �E : : : �E Rpus

ó

Q�� $REP1�; : : : ; Pn�;Q��
c; lr

Q�� $REP1�;Q��

R1�; : : : ; Rn�; S�� $RES��
c; lr

R1�; S�� $RES��
cut

Q��; S�� $REQ��; S��
c; lr

Q��; S�� $REQ��; S��

Figure 4.6: Translation of a resolution step to sequent calculus modulo

In the end, deriving the empty clause in ENAR corresponds to deriving the the empty sequent i.e. the

most simple contradiction in sequent calculus modulo.

31

CHAPTER 5

Cut-elimination Modulo

Besides it is an error to believe that rigor in the proof is the enemy of simplicity. On the contrary we find

it confirmed by numerous examples that the rigorous method is at the same time the simpler and the

more easily comprehended.
David Hilbert

5.1 CERES

Since the actual algorithm of CERES modulo is very close to the original CERES method, most of the

definitions would be a repetition with small changes. Instead, we here give an overview of how the

method works. It consists of four steps:

1. Skolemization of the proof

During the construction of the proof projections in step 4, additional variables may turn up in a

sequent. To prevent capture of eigenvariables, the proof will be skolemized. In some cases, the

skolem terms can be also given a mathematical interpretation [BHL�08].

2. Cut-transformation to tautologies via Tcut
This transformation replaces cut rules by implication rules on the left, which add tautologies to

the antecedent of the conclusion. We now have a cut-free proof with additional formulas in the

end-sequent, which will be removed in step 4. Newer formulations of CERES do not use this

(somehow artificial) transformation anymore, because it is only present to ease the reasoning about

the method but the same characteristic clause set can be constructed with only small modifications

to the definitions in step 3.

3. Construction of the characteristic clause set and refutation of it

Since our formulation of sequent calculus does not allow a context in the axiom rules and we

can restrict ourselves to the introduction of atom formulas, the sequent of an axiom rule directly

corresponds to a clause set. We now follow all formulas going into a tautology in the end-sequent up

32

to the axiom rule in which they were introduced and construct the so called characteristic clause set

from them which still proves the tautology in the end-sequent. Since a tautology in the antecedent

of a sequent means that this formula is unsatisfiable, we construct a resolution refutation instead of

a sequent calculus proof.

4. Constructing the projections and completing the resolution proof with it

In the last step, we construct a proof of the end-sequent with one of the clauses from the charac-

teristic clause set as additional formula, the so called projection of the proof to a clause. Then we

repeat the resolution refutation from step 3 with the projections. The simulation of a resolution rule

in sequent calculus again introduces atomic cuts, but these are much easier to eliminate, so con-

structing a proof in this so called atomic cut normal form (ACNF) is sufficient for our cause. Even

with the elimination of the atomic cuts, the CERES method has a lower computational complexity

than reductive cut-elimination [BL00].

5.2 CERES modulo

Definitions

For the formulation of CERES modulo, we need some additional definitions.

Definition 5.2.1 (Merging of Sequents). For two sequents S1 : P $RE Q and S2 : R $RE T , S1 � S2 is

defined as P ;R $RE Q;T .

Definition 5.2.2 (Merging of Sets of Sequents). For two sets of sequents L1 : tS1; : : : Snu and S2 :

tT1; : : : ; Tmu, S1 b S2 is defined as tSi � Tj |1 ¤ i ¤ n; 1 ¤ j ¤ mu.

Definition 5.2.3 (Ancestor Relation).
An axiom has no immediate ancestor. For unary rules, let � denote the sequent occurrence of a consequent

of the sequent occurrence �. If � is the occurrence of the principal formula in � and � is the occurrence

of the auxiliary formula in �, then � is an immediate ancestor of �. If � is a formula occurrence of the

context of �, then its occurrence � in the context of � is also an ancestor of �.

For binary rules, let � denote the sequent occurrence of a consequent of the sequent occurrences

�1 and �2. If � is the occurrence of the principal formula in � and �1 and �2 are the occurrences of

the auxiliary formulas in �1 and �2, then �1 and �2 are immediate ancestors of �. If � is a formula

occurrence of the context of �, then its occurrences �1 and �2 in the context of � are also ancestors of �.

The ancestor relation is the reflexive, transitive closure over the immediate ancestor relation.

Since we always define all the auxiliary formulas of a rule as immediate ancestors, we notice that a

rule can either only work on ancestors or only work on non-ancestor of a formula. This will simplify the

case distinctions on proofs concerning the ancestor relation in sequent calculus proofs.

33

Definition 5.2.4 (ancestor and non-ancestor function). The ancestor function ancp�; �q returns the sub-

sequent containing exactly those formulas of the sequent occurrence �, which are in ancestor relation to

the formula occurrence �.

The non-ancestor function ancp�; �q returns the subsequent containing exactly those formulas of the

sequent occurrence �, which are not in ancestor relation to the formula occurrence �.

From the definition it is easy to see that if S is the sequent denoted by the sequent occurrence �,

ancp�; �q � ancp�; �q � S for any formula occurrence �.

Example

To give an example how ancestors are denoted, we formulate a simple proof that for all x, x � 4 is an

even number(figure 5.1). To denote an even number, the predicate E is used, the function symbol � is

considered to be associative, commutative and having a the unit element 0, so our congruence E � ACU

and R � ;. The ancestors of the formula CF are colored blue.

shorthand notation: CF � @x@ypEpx� yq ñ Eppx� 1q � py � 1qqq

Epx� yq $REEpx� yq Eppx� 1q � py � 1qq $REEppx� 1q � py � 1qq
ñ; l

Epx� yq ñ Eppx� 1q � py � 1qq; Epx� yq $REEppx� 1q � py � 1qq
@; l

@xpEpxq ñ Epx� p1� 1qqq; Epx� yq $REEppx� 1q � py � 1qq
ñ; r

@xpEpxq ñ Epx� p1� 1qq $REEpx� yq ñ Eppx� 1q � py � 1qq
@; r

@xpEpxq ñ Epx� p1� 1qqq $RE@ypEpx� yq ñ Eppx� 1q � py � 1qqq
@; r

@xpEpxq ñ Epx� p1� 1qqq $RE@x@ypEpx� yq ñ Eppx� 1q � py � 1qqq

p�1q

Epc� cq $REEpc� cq Eppc� cq � p1� 1qq $REEpc� p1� p1� cqqq
ñ; l

Epc� cq; Epc� cq ñ Eppc� cq � p1� 1qq $REEpc� p1� p1� cqqq
@; l

Epc� cq;@ypEpc� yq ñ Eppc� yq � p1� 1qqq $REEpc� p1� p1� cqqq
@; l

Epc� cq;@x@ypEpx� yq ñ Eppx� 1q � py � 1qqq $REEpc� p1� p1� cqqq

p�2q

p�1q

@xpEpxq ñ Epx� p1� 1qqq $RECF

p�2q

Epc� cq; CF $REEpc� p1� p1� cqqq
cut

Epc� cq;@xpEpxq ñ Epx� p1� 1qqq $REEpc� p1� p1� cqqq

Figure 5.1: Example for the ancestor relation

Since we will make proofs by induction, we will need a measure for the complexity of a formula. Its

analogon for sequent calculus proofs is called the depth of a proof.

34

Definition 5.2.5 (Complexity of a formula). If A is an atom formula, its complexity is 1. Suppose A

and B are formulas of complexity n and m respectively. Then the complexity of A is n � 1 and the

complexity of A �B for � P t^;_;ñu is maxpn;mq � 1.

Definition 5.2.6 (Depth of a proof). An axiom introduction occurs at depth 1. Let �1 and �2 be proofs of

depth n and m respectively. Then the complexity of the proof � applying a unary rule to �1 is n� 1 and

the complexity of the proof �1 applying a binary rule to �1 and �2 is maxpn;mq � 1.

Also the usual way of bringing a formula into prenex normal form before bringing it into skolem

normal form makes the recognition of the mathematical arguments used harder. So we use structural

skolemization instead, which replaces quantifiers at their original position. The notions of polarity and

weak/strong quantifiers is then used to refer to quantifiers which would become existential or universal

during prenex normal form transformation.

Definition 5.2.7 (Polarity [BL00]). The polarity of the occurrence of a formula A in a formula B is

either positive or negative. If A � B it is positive. If B has the shape F _G, F ^G, @xF or DF and the

polarity of � in F or G is positive (negative), then the polarity of � in B is still positive (negative). For

B � F ñ G, if � occurs positively (negatively) in G, the polarity stays the same in B, but if � occurs

positively (negatively) in F , polarities switch i.e. � occurs negatively (positively) in B. If B � F and

� occurs positively (negatively) in F , it occurs negatively (positively) in B.

Definition 5.2.8 (Weak and strong quantifiers, [BL00]).
If p@xq occurs positively (negatively) in a formula F , then p@xq is a strong (weak) quantifier.

If pDxq occurs positively (negatively) in a formula F , then pDxq is a weak (strong) quantifier.

From now on we assume we do not have ô as a logical symbol(which is not present in our formula-

tion of sequent calculus modulo anyway), since then polarity can become ambiguous for some formula

occurrence. As an example take the formula

F � p@xP pxq ñ DyQpyqq ^ pDyQpyq ñ @xP pxqq

where the first occurrence of p@xq is weak and the second one is strong. But also F � @xP pxq ô DyQpyq

where for consistency reasons, p@xq would need to be both weak and strong. A simple solution is to

replace every formula Aô B by pAñ Bq ^ pB ñ Aq, since they are logically equivalent. This leaves

each occurrence of a quantifier to be either weak or strong in a formula.

Another source of problems is overbinding of variables which may destroy eigenvariable conditions

if not handled properly. The easiest way is to give variables of the same name in different biding contexts

a unique one. A formula where all quantified variables are unique is called rectified.

Definition 5.2.9 (rectified formula, [LF05]). A formulaA is rectified if the following property is fulfilled:

if B1 dB2 (for d P t^;_;ñ;ôu) is a subformula of A and a variable x occurs bound in B1 (B2), then

x does not occur in B2 (B1).

35

Additionally, the eigenvariables eliminated in the strong quantifier introduction rules in sequent cal-

culus may have the same name on different branches of the proof tree. A regular proof then has unique

eigenvariables in each branch.

Definition 5.2.10 (Regular proof [BL00]). A sequent calculus (modulo) proof is called regular if eigen-

variables eliminated on different branches of the proof tree are different. More formally: Let � be a

subproof of an LK-proof of the form

p�1q

�1 $RE�1

p�1q

�2 $RE�2
X

S : �1;�2 $RE�1;�2

where X is a binary rule. Let V 1 (V 2) be the set of eigenvariables occurring in �1 (�2) but not in S.

Then � is called regular if V 1X V 2 � ;. A proof is called regular if all its subproofs are regular.

In the following, we will restrict ourselves to proofs of an end-sequent with rectified formulas and to

regular proofs, which makes handling of overbinding considerably easier in our considerations.

Definition 5.2.11 (scope of quantifiers [BEL01]). LetA be a rectified formula withoutô, andF : pQxqG

be a subformula of A. Then for every subformula pQ1yqH of G, we define pQxq A pQ
1yq; in this case

we say pQ1yq is in the scope of pQxq.

The order A is not total since for instance in the formula p@xApxqq^ p@yBpyqq, x and y are incom-

parable. The order A can be completed to a total order A by additionally defining pQxq A pQyq for

all subformulas G : B1 dB2 of a formula F for any variable x bound in B1 and any variable y bound in

B2. If pQxq pQyq, we can say that pQxq is left of pQyq. Since a formula contains only a finite number

of quantifiers, there also exists a least element regarding scope, which is called the leftmost quantifier.

Definition 5.2.12 (Dominated quantifier). Let � be an occurrence of the formula F containing the quan-

tifier pQxqwhich is an ancestor of an occurrence of the formulaG and let pQyq be a quantifier inGwhich

is not in F . Then pQyq is said to dominates pQxq.

This definition corresponds to definition 5.2.11 of the scope relation on quantifiers: the quantifier

pQxq is in the scope of pQyq if and only if the introduction rule for pQxq is further below in the proof

than the introduction of pQyq.

Skolemization of Proofs

To skolemize a formula F , we use the same transformation as in theory-free predicate logic. Since we

want to preserve the validity of a formula, we need to eliminate all occurrences of a strong quantifier in

F .1

1Refutation al calculi like resolution need to preserve satisfiability instead; in this case we need to eliminate the weak quantifiers
in F .

36

Definition 5.2.13 (Structural skolemization [BL99]). The function sk maps closed formulas into closed

formulas. It is defined by:

skpF q �

$''''&
''''%

F if F does not contain strong quantifiers

skpFpQyqty Ð[fpqu if pQyq is not in the scope of a weak quantifier

skpFpQyqty Ð[fpx1; : : : ; xnquq if pQyq is in the scope of the weak

quantifiers pQ1x1q F : : : F pQnxnq

where f is a fresh function symbol and fpq is a treated as a constant.

FpQyq is identical to F with the quantor pQyq dropped.

This definition is only sensible for rectified formulas since otherwise a variable may be captured by a

surrounding quantifier for the same variable name and also applying the substitution of the skolem term

to the whole formula only works if there is no variable of the same name in a different binding context.

Even though the definition eliminates quantifiers individually, the steps are independent of each other

and we may thus eliminate them in parallel in practice, although for argumentational purposes it is easier

to assume that the quantifiers are eliminated from left to right. Since we work in the presence of equational

theories we should note that a fresh constant or function symbol may also not be introduced by the theory.

Since the name of the skolem symbols is non-deterministic, skpF q is no function. We can remedy this by

introducing the same skolem symbol for the same variable. From now we will assume that skpF q does

this consistent renaming.

In classical logic, skolemization is validity preserving i.e. $ F if and only if$ skpF q for all formulas

F , although we are mainly interested in the only-if part of the equality. Also in [BL99] a method to trans-

form a sequent calculus proof of F into a proof of skpF q was given. It works by recursively eliminating

only those strong quantifiers which appear in the end-sequent.

First we define, how a skolemized (end-)sequent should look like:

Definition 5.2.14 (Skolemization of a sequent). Let T � pF1 ^ : : : ^ Fnq ñ pG1 _ : : : _ Gmq be

the formula corresponding to the sequent S : F1; : : : ; Fn $RE G1; : : : ; Gm and pF 1
1 ^ : : : ^ F 1

nq ñ

pG1
1 _ : : :_G

1
mq be the skolemization skpF q. Then F 1

1; : : : ; F
1
n $RE G1; : : : ; G

1
m is the skolemization

of S.

Then an occurrence of a strong quantifier is eliminated in the following way: let � be the subproof

in figure 5.2 (the argumentation for D; l is the same) of a larger proof � where pQyqP is an ancestor of

a formula F in the end-sequent in which pQyq occurs strongly and where pQyqP is dominated by the

weak quantifiers pQ1x1q; : : : ; pQnxnq. Also let the variables x1; : : : ; xn replace the terms t1; : : : ; tn in

their respective quantifier introduction rules in �. Then the introduction rule of pQyq which replaces the

eigenvariable v can be left out by substituting fpt1; : : : ; tnq for both y and v. Since our proof is regular

and the end-sequent is rectified, we can apply the substitution on the whole proof �. The inferences

below the skipped introduction rule can still be repeated like they appear in �. During this process the

37

introduction rules for the weak quantifiers will successively replace the terms t1; : : : ; tn by variables until

after the last one eliminated, the term fpx1; : : : ; xnq has taken the role of y in the proof. This is exactly

the substitution that would be applied to the end-sequent during its skolemization.

p�q

� $F;�
@; r

� $@yF;�

p�tv Ð[fpt1; : : : ; tnquq
� $F tv Ð[fpt1; : : : ; tnqu;�

where v is the eigenvariable replaced by the introduction of y

Figure 5.2: Elimination of a strong quantifier during skolemization

To allow equational inferences, we add the conversion rules (figure 4.3) to theory-free sequent calcu-

lus and show that it may be still applied if the active formula is skolemized.

�; P $�
conv; l

�; Q $�

where P �RE Q

ñ
�; skpP q $�

conv; l
�; skpQq $�

where skpP q �RE skpQq

Figure 5.3: Substitutivity of the equational conversion rules

Since by definition 5.2.13 the quantifiers are recursively eliminated one by one and we assume that

skpF q is a function, we will prove P �E Q implies skpP q �E skpQq by induction on the number of

strong quantifiers and assume the quantifiers are eliminated from left to right. The task becomes also

easier since only equational inferences on terms are allowed and thus P and Q have the same logical

structure and only differ on the term level.

We also remember that we assume the proof to be regular and that the end-sequent is rectified. Then

a strongly quantified variable only occurs in the subtree above to the introduction allowing us to apply

substitutions for eigenvariables to the whole proof.

• There is no strong quantifier in F . Then skpF q � F and the proof � is also its skolemization.

• The strong quantifier pQyq which is in the scope of the weak quantifiers pQ1x1q; : : : pQnxnq is

eliminated. The argumentation for the usual rules of sequent calculus are given in [BL99], so we

only need to argument, why the skolemization does destroy neither soundness nor completeness of

the conversion rules.

For this we need to prove that if P �RE Q, then also PpQyqty Ð[fpt1; : : : ; tnqu �RE QpQyqty Ð[
fpt1; : : : ; tnqu where t1; : : : ; tn are the terms eliminated down in the proof by the quantifier intro-

duction rules for Q1x1; : : : ; Qnxn.2 A propositional rewrite rule could introduce a strong quanti-
2This is not entirely exact, since we will substitute partially instantiated skolem terms which will only become the final skolem

term fpx1; : : : ; xnq in the end. Luckily, the argumentation does not depend on the terms substituted.

38

fier, so it is important here that we assume R to be empty. We then only need that to show that

P �E Q implies PpQyqty Ð[fpt1; : : : ; tnqu �E QpQyqty Ð[fpt1; : : : ; tnqu.

Now we prove P �E Q implies PpQyq� �E QpQyq� for � � ty Ð [fpt1; : : : ; tnqu by induction on

the complexity of P (or Q, since they have the same structure).

IB:

– Equational theories are are closed under substitution so s �E t implies s� �E t� for any

substitution �.

– Atom formula:

Suppose for all i P t1; : : : ; nu si �E ti and Aps1; : : : ; snq �E Apt1; : : : ; tnq. Then the

equational theory may not change the predicate symbol, so by the definition of substitution

also Aps1�; : : : ; sn�q �E Apt1�; : : : ; tn�q holds.

IH: A �E B implies A� �E B� for A and B of complexity ¤ n.

IS:

– Negation: By IH we assume A� �E B� for complexity ¤ n. Since the equality �E is on

terms only, also p Aq� �E p Bq�.

– Conjunction, disjunction, implication:

By IH we again assume A1� �E B1� and A2� �E B2� for complexity ¤ n. For the same

reason as above, also pA1 �A2q� �E pB1 �B2q� for � P t^;_;ñu.

– Weak quantifier:

By IH we know A� �E B� for complexity ¤ n. Now also pQxA�q �E pQxB�q since we

only replace strongly quantified variables in �.

– Strong quantifier:

By IH we know A� �E B� for complexity ¤ n.Let pQzq be the quantifier applied to A (and

B). Then we have two cases:

* pQzq is not the quantifier pQyq eliminated in this step: Since we eliminate quantifiers

from left to right, pQyq is left of pQxq and thus not occurring in A. Then ApQyq � A and

also x� � x since � only substitutes y to a term different from itself, so from A �E B

we conclude ApQyq� �E BpQyq�.

* pQzq is the quantifier pQyq we want to eliminate: thenA� �E B� is already the formula

we seek, since Qz is not applied and by having a regular proof with a rectified end-

sequent, we know that pQyq does not occur twice in the formula, so ApQyq � A and

BpQyq � B.

39

Eigenvariables are not violated in the original process, because elimination rule for the left-most

quantifier is the closest one to the end-sequent. So even though a the term ti (a ¤ i ¤ n) may

now appear sooner in the proof, there are no strong quantifier rules in between whose eigenvariable

condition could be destroyed.

With regard to the conversion rules we notice that they only contain a subset of the variables of the

original formulas so eigenvariable conditions can not be violated by them.

Cut Extension

The cut-extension Tcut is a proof transformation which replaces the rule for cut over the formula A by an

application of the implication left rule for the formula A ñ A. This reduces the task of cut-elimination

to one of tautology elimination in the antecedent of the end-sequent of a proof.3 More formally, the proof

of the end-sequent � $RE � with n cuts is recursively rewritten, starting from the leaves. Every rule is

kept as it is, only the cut-rule is replaced by the implication on the left (see figure 5.4). To avoid variable

captures, we need to universally close Añ B over the free variables x in the formula.

�1 $RE�1; P �2; Q $RE�2
cut

�1;�2 $RE�1;�2

ñ

�1 $RE�1; P �2; Q $RE�2
ñ; l

�1;�2; P ñ Q $RE�1;�2
@; l

�1;�2;@xpP ñ Qq $RE�1;�2

Figure 5.4: Replacement of the Cut Rule by Implication

Since for the cut-rule to apply, P �RE Q must hold, it is easy to see that @xpP ñ Qq is valid and the

rewritten proof new has the end-sequent �;@x1pA1 ñ B1q; : : : ;@xnpAn ñ Bnq $RE �. To handle the

tautologies more easily, we can build one valid formula by repeated application of the conjunction rule

on the left and get a proof of �;@x1pA1 ñ B1q ^ : : :^ @xnpAn ñ Bnq $RE �.

The Characteristic Clause Set

Definition 5.2.15 (CLp ; �q, analog to [BL00]). Let be a cut-free proof of the sequent S (in sequent

calculus modulo) and � be an occurrence of a formula in S. Then the set of characteristic clauses

CLp ; �q is inductively defined:

Let � be the occurrence of an initial sequent P $RE Q in �, where P �RE Q and let �1 (�2) be the

occurrence of P (Q). If neither �1 nor �2 are ancestors of �, then C� � t$REu. If both, �1 and �2 are

ancestors of �, then C� � ;. If only �1 is ancestor of �, then C� � tP $REu, if only �2 is ancestor of �,

then C� � t$RE Qu.

3The introduction of the cut-extension is somewhat artificial in the sense that we introduce a formula which will later be
eliminated again. Newer formulations of CERES like [BL06, HLWP08, LB11] drop this construction, but for easier understanding,
the construction was kept.

40

For an occurrence � of an initial sequent R $RE with R �RE K, there are only two possibilities: if

R is ancestor of � define C� � ;, if R is not ancestor of � define C� � t$REu.

Assuming the clause sets C� with depthp�q ¤ k have been constructed for all sequent-occurrences �

in . Then the sequent-occurrence � with depthp�q � k � 1 is defined as follows:

1. Unary Rule: Let � be the consequent of the occurrence �, then C� � C�.

2. Binary Rule: Let � be the consequent of the occurrences �1 and �2 of the binary rule X .

a) Auxiliary formulas of X are ancestors of �: C� � C�1 Y C�2 .

b) Auxiliary formulas of X are not ancestors �: C� � C�1 b C�2 where

tP1 $RE Q1; : : : ; Pn $RE Qnu b tR1 $RE T1; : : : ; Rm $RE Tmu �

tPi; Rj $RE Qi; Tj |1 ¤ i ¤ n; 1 ¤ j ¤ mu.

Now CLp ; �q � C� , where � is the occurrence of the end-sequent.

Lemma 5.2.16 (refutability of CLp ; �q). In a cut-free proof , the characteristic clause set CLp ; �q

is refutable if � is a left occurrence of a tautology.

Proof. This proof mirrors the one in [BL00], since it only uses information about the structure of LK

proofs, which is the same for sequent calculus modulo. It works by showing that from the characteristic

clause set CLp ; �q the sequent B $RE is derivable in sequent calculus modulo, where B is the formula

at position �. Since sequent calculus is sound with respect to LK, T ; B $ must be provable in LK and

by Theorem 4.3.2, there also exists an ENAR refutation of CLp ; �q.

We prove for all sequent occurrences �, C� $RE ancp�; �q by structural induction on the depth of the

proof.

IB:

The only possible rules of sequent calculus modulo at depth 0 are axiom and bottom introduction4.

We first look at axiom introduction of P �RE Q. Only if both P and Q are ancestors of �

(ancp�; �q � P $RE Q), the corresponding clause set is C� � ;, P $RE Q is a tautology prov-

able from the empty set of clauses. In the other cases C� is defined as ancp�; �q, so the clause set trivially

proves the ancestor.

Now we look at an occurrence � of a bottom introduction for a sequent R $RE with R �RE K. If R

is ancestor of �, we need to prove R $RE from the empty set, which works because the formula is valid.

If R is not ancestor of �, $RE is provable from t$REu.

IH: suppose C� $RE ancp�; �q for all sequent occurrences � with depthp�q ¤ k.

4see figure 4.1

41

IS: Let � be a sequent occurrence in at depthp�q � k � 1 and let � be the proof of ancp�; �q. We

now have to make a case distinction on the arity of the inference step and whether it is done on ancestors

of � or not:

1. unary inference: here the general structure of � with the last inference rule X is:

p�q

�;� $RE�;�
X

�1;�1 $RE�
1;�1

with ancp�; �q � �1 $RE �1 and ancp�; �q � � $RE � for the predecessor occurrence � of

�. Since depthp�q � k, we can apply the induction hypothesis C� $RE � $RE � and obtain a

proof � for the ancestors of � from its corresponding clause set C�. If the inference took place on

an non-ancestor of a cut formula, then � � �1 and � � �1 so no rule application is required at all.

If the rule X operates on an ancestor, then X now allows to infer �1 $RE �1 from C�, which is

equal to C� by definition 5.2.15:

p�q

� $RE�
X

�1 $RE�
1

For the rules @; r and D; l the eigenvariable condition must hold. This is the case, because in � the

eigenvariable condition is not violated, which means that the fresh variable v introduced does not

occur in the formulas p� Y � Y� Y �qztF u where F is the principal formula of X . But then v

does also not occur in p�Y�qztF u.

So C� $RE �1 $RE �
1 which is ancp�; �q.

2. binary inference:

a) binary inference on ancestors: The situation here is similar to the one before, but with two

sources. Let the general structure of the inference of � be:

p�1q

�1;�1 $RE�1;�1

p�2q

�2;�2 $RE�2;�2
X

�1
1;�

1
2;�

1
1;�

1
2 $RE�

1
1;�

1
2;�

1
1;�

1
2

with �1 and �2 denoting the predecessor occurrences of � and ancp�; �q � �11;�
1
2 $RE �1

1;�
1
2,

ancp�1; �q � �11 $RE �1
1, ancp�2; �q � �12 $RE �1

2 being the ancestors of �, �1 and �2.

Again by induction hypothesis, there are proofs �1 and �2 from C�1 and C�2 of the ancestors

of �1 and �2 which can be joined together via X:

p�1q

�1 $RE�1

p�2q

�2 $RE�2
X

�11;�
1
2 $RE�

1
1;�

1
2

so indeed C�1 Y C�2 � C� $RE ancp�; �q.

42

b) binary inference on non-ancestors:

Since the inference takes place on non-ancestors, the formulas to be proven are the same.

Then the general structure of the inference of � is:

p�1q

�1;�1 $RE�1;�1

p�2q

�2;�2 $RE�2;�2
X

�1
1;�

1
2;�1;�2 $RE�

1
1;�

1
2;�1;�2

with �1 and �2 denoting the predecessor occurrences of � and ancp�; �q � �1;�2 $RE �1;�2,

ancp�1; �q � �1 $RE �1, ancp�2; �q � �2 $RE �2 being the ancestors of �, �1 and

�2. Also by induction hypothesis, we again get the proofs �1 and �2 of �1 $RE �1 and

�2 $RE �2.

By looking at Definition 5.2.15, we need to prove C�1 b C�2 $RE �1;�2 $RE �1;�2. For

this, for each clause in CLp�2; �q, we add this clause to �1 by weakening and are then able

to use the enriched proofs instead of the introduction of the clause to form a combined proof.

So let Di � tP1; Ri $RE Q1; Ti; : : : ;Pn; Ri $RE Qn; Tiu with i P t1; : : : ;mu be those

parts of C�1bC�2 that are combined with clause i from C�2 . We also notice that
�

iPt1;:::;mu

Di �

C�1 b C�2 .

For every i each axiom introduction Pj $RE Qj with 1 ¤ j ¤ n of �1 can be ex-

tended to an introduction of Pj ; Ri $RE Qj ; Ti. By repeating the rule applications of �1
we can prove the extended end sequents Si of �1rRi $RE Tis which have the structure

Ri; : : : ; Ri; �1 $RE �1; Ti; : : : ; Ti and can be reduced to Ri; �1 $RE �1; Ti via

some contractions depending on the number of binary rules in �1. Since we assume �1 and �2
to be regular, no eigenvariable condition is violated by this procedure and the resulting proofs

are correct. In the following, we denote the proofs by �i.

Now we can use the proofs �i as initial sequents instead of the original Ri $RE Ti. Again by

repeating the rule applications of �2 we get an end sequent �1; : : : ;�1;�2 $RE �1; : : : ;�1;�2

which can be reduced to �1;�2 $RE �1;�2 via contraction.

So indeed C�1 b C�2 � C� $RE ancp�; �q.

Example

In the example in figure 5.1 (which is is already a cut-extension), with � denoting the occurrence of

the formula @xpEpxq ñ Epx � p1 � 1qqq collecting the formulas going into cuts, the characteristic

clause set is tEpx� yq $RE Eppx� 1q � py � 1qq;$RE Epc� cq;Eppc� cq � p1� 1qq $REu: Since

the top left inference is on non-ancestors of �, the sequentsEpx�yq $RE and$RE Eppx�1q�py�1qq

43

are merged. All other binary inferences take place on ancestors of � and are thus combined via set-union.

The tree in figure 5.5 shows the derivation.5

E(x+y) $RE $REE((x+1)+(y+1))
b

E(x+y) $REE((x+1)+(y+1))
$REE(c+c) E((c+c)+(1+1))$RE

Y
$REE(c+c); E((c+c)+(1+1))$RE

Y
E(x+y) $REE((x+1)+(y+1)); $REE(c+c); E((c+c)+(1+1))$RE

Figure 5.5: Example of a characteristic clause set calculation

Figure 5.6 now shows how to construct a resolution refutation from the characteristic clause set.

$REEpc� cq

Epx� yq $REEpx� 1q � py � 1q Eppc� cq � p1� 1q $RE
� � txÐ [0; y Ð [c� cu

Epc� cq $RE
$RE

Figure 5.6: Resolution refutation of the example characteristic clause set

Projections

One of the central ideas of CERES is to mirror the resolution refutation of the characteristic clause set with

proofs of the end-sequent without the cut-extension but additionally of one clause from the characteristic

clause set. These enriched proofs are called projections and are constructed by extracting that part of the

proof which contributes to the additional clause while replacing the remaining branches of the proof by

appropriate weakenings.

Lemma 5.2.17. Let be a skolemized, cut-free proof of a sequent S : A;� $RE �, where A is valid

and � is the occurrence of A in S. Let C : P $RE Q be a clause in CLp ; �q. Then there exists a

cut-free proof rCs of P ;� $RE �; Q with lp rCsq ¤ lp q.

We inductively construct a proof that proves ancp�; �q �C for each C P C�. For the end-sequent, this

is exactly what we want to show: P ;� $RE �; Q.

IB:

For an axiom introduction S : P $RE Q with P �RE Q at position �, if both formulas are ancestors

of �, then it will not turn up in any projection. In the other three cases, C� is defined as ancp�; �q, so

ancp�; �q � Cp�q � ancp�; �q � ancp�; �q � S is the whole sequent, which is valid.

5Newer formulations of CERES like [BHL�08, Wel10, Pal09, LB11] drop the notion of characteristic clause set and replace it
by clause terms, which are trees with sequents as leafs and the merge and union operation as inner nodes. If the inner nodes are
labeled accordingly, figure 5.5 also represents the clause term.

44

For the bottom introduction S : R $RE with R �RE K, there are two cases, one of them does

not prove any non-ancestor, so only the case where there are no ancestors remains. But then again,

R $RE � $RE� R $RE , which is valid.

IH: suppose rC�s is constructed for all proofs of length ¤ k with the end-sequent occurrence �.

Now we have to make a case distinction on the construction of C:

1. Unary rule:

Let the inference have the following shape, with lengthp�q � k, the formulas R, R
1
,T and T

1

denoting ancestors of � and the formulas �, �1, � and �1 denoting non-ancestors of �.

p�q

p�qR
1
;�1 $RET

1
;�1

p�qR;� $RET ;�

By IH, we can assume �rCs is already constructed for all C P C�. From the definition of C; we

also know that the clause set does not change in unary inferences, so C� � C�. Nonetheless the

construction of the projection differs whether the rule is applied to ancestors of � or not:

a) Inference on ancestors:

In this case, the non-ancestors don’t change, so �rCs is already the proof we need:

p�q

R
1
;� $RE�; T

1

X
R;� $RE�; T

ñ
p�rP $RE Qsq

P ;� $RE�; Q

Also by IH we we know that lengthp�rCsq ¤ lengthp�q, but since we did not change the

proof, trivially also lengthp�rCsq ¤ lengthp�q � 1.

b) Inference on non-ancestors:

Here only the non-ancestors change, so by just repeating the inference, we get a proof of

P ;� $RE �; T :

p�q

R;�1 $RE�
1; T

X
R;� $RE�; T

ñ

p�rP $RE Qsq

P ;�1 $RE�
1; Q

X
P;� $RE�; Q

Since C can contain variables, an application of the @; r and D; l rule could now violate their

eigenvariable conditions. This is the reason why we required to be skolemized, where those

rules do not occur anymore.

By IH we we know that lengthp�rCsq ¤ lengthp�q. We apply exactly one rule on both � and

�rCs, so the inequality still holds.

45

2. Binary rule:

Let the binary rule have the following shape, with lengthp�iq ¤ k, C� � P $RE Q, ancp�; �q �

� $RE � and ancp�; �q � R $RE T :

p�1q

p�1qR1;�1 $RET1;�1

p�2q

p�2qR2;�2 $RET2;�2

X
p�q� $RE�

a) On ancestors:

From the definition, we know that C� � C�1 Y C�2 . Then either C is element of C�1 or C�2 .

We can w.l.o.g. assume C P �1. By IH we can construct �1rCs. Since we are not interested in

proving clauses in C2, we do not need �2 but can add the formulas �2 and �2 by weakening

instead.

p�1q

R1;�1 $RE�1; T1

p�2q

R2;�2 $RE�2; T2
X

R;�1;�2 $RE�1;�2; T

ñ

p�irPi $RE Qisq

Pi;�i $RE�i; Qi
w; l � r

Pi;�1;�2 $RE�1;�2; Qi

We know from the IH that lengthp�irCisq ¤ lengthp�iq, so the proof of the sequent-

occurrence � has then lengthp�1q � lengthp�2q � 1, whereas the projection has a length

of lengthp�1q�n, where n is the number of formulas in �2 $RE Q2. Since the introduction

rules do not have a context, there is no way to introduce n formulas in a proof of length ¤ n.

So the projection has a lesser length than the proof of �.

b) On non-ancestors:

In this case, the parts of C do come from both �1 and �2: by definition of C; C� � C�1 b C�2 .

Since C P C�, there are clauses C1 P C�1 and C2 P C�2 such that C1 � C2 � P1 $RE

Q1�P2 $RE Q2. Applying the IH, we can construct the proofs �1rC1s and �2rC2s. Since the

rule is applied on non-ancestors, we can repeat it. Because we have a multiplicative sequent

calculus, the ancestor formulas are merged, which is exactly, what we want to achieve to

prove � $RE �rCs:

p�1q

R;�1 $RE�1; T

p�2q

R;�2 $RE�2; T
X

R;� $RE�; T

ñ

p�1rP1 $RE Q1sq

P1;�1 $RE�1; Q1

p�2rP2 $RE Q2sq

P2;�2 $RE�2; Q2

X
P1; P2;� $RE�; Q1; Q2

Again, the length of of the proof of the sequent-occurrence � is lengthp�1q� lengthp�2q� 1

and by IH we know that lengthp�irCisq ¤ lengthp�iq. Now the length of our constructed

projection is lengthp�1rC1sq � lengthp�2rC2sq � 1 ¤ lengthp�1q � lengthp�2q � 1.

Example

Since the characteristic clause set from figure 5.5 contains three clauses, there are also three projections

which are given in figure 5.7.

46

Projection to Epx� yq $RE Eppx� 1q � py � 1qq:
Epx� yq $REEpx� yq Eppx� 1q � py � 1qq $REEppx� 1q � py � 1qq

ñ; l
Epx� yq ñ Eppx� 1q � py � 1qq; Epx� yq $REEppx� 1q � py � 1qq

@; l
@xpEpxq ñ Epx� p1� 1qqq; Epx� yq $REEppx� 1q � py � 1qq

Projection to $RE Epc� cq:

Epc� cq $REEpc� cq
w; r

Epc� cq $REEpc� cq; Epc� p1� p1� cqqq
w; l

Epc� cq;@xpEpxq ñ Epx� p1� 1qqq $REEpc� cq; Epc� p1� p1� cqqq

Projection to Eppc� 1q � pc� 1qq $RE :

Eppc� cq � p1� 1qq $REEpc� p1� p1� cqqq
w; l

Epc� cq; Eppc� cq � p1� 1qq $REEpc� p1� p1� cqqq
w; l

Epc� cq;@xpEpxq ñ Epx� p1� 1qqq; Eppc� cq � p1� 1qq $REEpc� p1� p1� cqqq

Figure 5.7: Example for projections

Inserting the Projections into the Resolution Proof

We have already seen how to translate a resolution proof into sequent calculus modulo, but in the case of

projections, our clause sequents have an additional context � $RE � and instead of the empty sequent

we want to derive � $RE �. Now changing the resolution translation from figure 4.6 to one with context

(figure 5.8) leaves us to check whether this could introduce any problems. Since our clauses are ground,

they cannot interfere with the free variables in � $RE �, but the multiplicative nature of the rules of

sequent calculus modulo doubles the context after each resolution step. This can be remedied with a

series of contractions after each resolution translation. By the simulation of the resolution steps, we reach

a proof with only atomic cuts of � $RE �r$RE s � � $RE � in the end, which is what we wanted to

achieve.

�; Q�� $REP1�; : : : ; Pn�;Q��;�
c; lr

�; Q�� $REP1�;Q��;�

�; R1�; : : : ; Rn�; S�� $RES��;�
c; lr

�; R1�; S�� $RES��;�
cut

�;�; Q��; S�� $REQ��; S��;�;�
c; lr

�; Q��; S�� $REQ��; S��;�

Figure 5.8: Translation of resolution steps with projections into sequent calculus modulo

Example

Since the endsequent repeats itself often in the proof, we denote its antecedent by � � Epc�cq;@xpEpxq ñ

Epx � p1 � 1qqq and its successfully by � � Epc � p1 � p1 � cqqq. From our resolution proof we get

47

the substitution � � tx Ð[0; y Ð[c � cu, which already creates ground instances of the clauses in the

characteristic clause set. The combined proof in ACNF can be seen in figure 5.9; � denotes the original

proof (figure 5.1).

�r$RE Epc� cqs�

� $REEpc� cq;�

�rEpx� yq $RE Eppx� 1q � py � 1qqs�

�; Ep0� pc� cqq $REEppc� 1q � pc� 1qq;�

�rEppc� cq � p1� 1q $RE s�

�; Eppc� cq � p1� 1qq $RE�
cut

�; Ep0� pc� cqq $RE�
cut

� $RE�

Figure 5.9: Example in ACNF after combination of the projections

48

CHAPTER 6

Implementation and Experiments

6.1 Overview

To experiment with CERES modulo, a specific equational theory needed to be chosen. AC and ACU

were selected because they are among the best studied equational theories. Also the long range goal

is to analyze Fürstenberg’s proof of the infinity of primes in CERES modulo as was already done with

CERES [BHL�08] since it contains many arithmetical inferences which could profit from the integration

of ACU. Also an implementation was started as part of the GAP project [LWWP�] which contains the

new implementation of the CERES method based on typed lambda calculus.

6.2 Examples and Comparison to CERES

The proof of the infinity of primes is huge - even the first instance of the schema is a proof tree of roughly

500 nodes - so extracting the characteristic clause set by hand is not an effective option. A proof over

Fibonacci numbers showing that @xfibpxq � 1 fibpx � 3q should have been a simpler example. It

sounded reasonably small, but some rules intuitively used by humans had to be proved as lemmas and

made the whole proof longer than expected. The principle @x@y@npx y ñ x � n y � nq i.e. the

monotonicity of the lesser-than relation on natural numbers is an example for this. Although the intuitive

lemmas provide many non-trivial cuts, the increase of the size of the whole proof makes it too large for a

manual extraction of the characteristic clause set.

The third example tried was the one from section 5:2 proving that four is an even number containing

the cut lemma that for every even number x, the number x+4 is also an even. For a comparison with

CERES for LKDe [BHL�06], the deduction modulo proof can be transformed to a sequent calculus

proof with the theory AC by theorem 4.2.3. Its characteristic clause set then additionally contains the

paramodulants proving the equalities. The characteristic clause set is given in figure 6.1 and the resolution

refutation is shown in figure 6.2. The resulting cut-free proof in ACNF (figure 6.3) is larger than the

corresponding proof obtained by CERES modulo because it also needs the projections to the equational

axioms. For the refutation no equational inferences were needed in sequent calculus modulo. On the

other hand equational resolution generates more intermediary clauses since the minimal complete set of

unifiers is usually considerably larger than the single unifier theory-free unification generates.

49

CLp�; �q � tEpx� yq $RE Eppx� 1q � py � 1qq;$RE Epc� cq;Epc� p1� p1� cqqq $REu Y
t$RE C4 � C3;$RE C3 � C2;$RE C2 � C1uY
t$RE C5 � C6;$RE C6 � C7;$RE C7 � C8;$RE C8 � C9u

shorthand notation:
C1 � c� p1� p1� cqq, C2 � c� pp1� 1q � cq, C3 � c� pc� p1� 1qq, C4 � pc� cq � p1� 1q
C5 � pc � 1q � py � 1q, C6 � c � p1 � py � 1qq, C7 � c � ppy � 1q � 1q, C8 � c � py � p1 � 1qq,
C9 � pc� yq � p1� 1q.

Figure 6.1: Characteristic clause set for the example in CERES with LKDe

$REC1 � C2 $REC2 � C3 �
$REC1 � C3 $REC3 � C4 �

$REC1 � C4

�1

$REC5 � C6 $REC6 � C7 �
$REC5 � C7

$REC7 � C8 $REC8 � C9 �
$REC7 � C9 �

$REC5 � C9

�2

�2

$REC5 � C9

$REEpc � cq Epx � yq $REEppx � 1q � py � 1qq
R

$REEppc � 1q � pc � 1qq
�

$REEppc � yq � p1 � 1qq

Epc � p1 � p1 � cqqq $RE

�1

$REC1 � C4 �
Eppc � cq � p1 � 1qq $RE

R; � � ty Ð [cu
$RE

Figure 6.2: Resolution refutation for the example in CERES with LKDe

6.3 Implementation Details

Since GAP is written in the functional Scala programming language, using Scala was an obvious choice.

Stickel’s unification algorithm (see section 3.4) was chosen because most improvements are based on it.

This choice proved to be very hindering, since the expected ease of adaptability is not provided by the

algorithm.

Diophantine Solver

To solve the diophantine equations, Lankford’s algorithm (see section 3.3) was used. Its mathematical

specification is very close to an implementation by iterating over the inductive steps of the algorithm. In

absence of a suited vector library, a vector implementation is also included. Since most operations on

vectors are iterations, vectors are represented as LISP-style lists of integers and also matrices are lists of

vectors. For the sets, the HashSet datatype wes deemed fitting.

50

� `C5 = C6;� � `C6 = C7;� =
� `C5 = C7;�

� `C7 = C8;� � `C8 = C9;� =
� `C7 = C9;� =

� `C5 = C9;�

� `E(c+ c);� �; E(c+ c) `E((c+ 1) + (c+ 1));�
cut

� `E((c+ 1) + (c+ 1));�
=

� `E((c+ c) + (1 + 1));�
�1

�; E(c+ (1 + (1 + c))) `�

� `C1 = C2;� � `C2 = C3;� =
� `C1 = C3;� � `C3 = C4;� =

� `C1 = C4;� =
�; E((c+ c) + (1 + 1)) `�

�2

�1
� `E((c+ c) + (1 + 1));�

�1
�; E((c+ c) + (1 + 1)) `�

cut
� `�

Figure 6.3: ACNF of the example in CERES with LKDe

Unification

The separation of the elementary case from the general case in the mathematical description of Stickel’s

algorithm leaves some room for improvements in the implementation. In the abstraction step it is already

known which variables will be unified with a constant or a term not starting with the symbol f i.e. which

coefficients of a solution have to be equal to one. For this reason two functions unifiable_invariant :

N
n�m ÞÑ B and unifiable_condition : Nm�n ÞÑ B are created on the fly. Let I be the set of indices

of coefficients which will need to be equal to one because they will be unified with a constant later. Then

unifiable_invariantpvq is true if and only if �ipvq ¤ 1 for i P I . For ACU unifiable_conditionpvq is

true if and only if �ipvq � 1 for i P I and for AC unifiable_conditionpvq is true if and only if �ipvq � 1

for i P I and �jpvq ¡ 0 with j P t1; : : : ; n �mu. These two functions are used to remove solutions as

early as possible during the generation of solutions from the basis vectors.

The unification algorithm itself is a modification of the rule based approach [MM82], its code is given

in listing 1 in appendix 7. The main idea is to generalize the function unify to return a list of substitutions

and to define composition of lists of substitutions as S1 � S2 � t�1�2|�1 P S1; �2 P S2u. As it turned

out, for equational theories solutions can not be composed that way. In the beginning, the missing ability

to solve systems of solutions was underestimated, since we expected the composability in the following

way: a set of equations P � tt1
?
� t2

?
� t3u is decomposable such that if there exists a most general

unifier � such that s1� � s2� and there exists another most general unifier � such that s2�� � s3��, then

�� is a most general unifier of P .

51

The example of tfpx; aq ?
�AC fpy; bq

?
�AC fpz; cqu from section 3.4 is a counterexample to this

assumption. At first sight, this might not seem too restricting since in immediate consequence, the ex-

tended resolution step in figure 4:5 would be forced to resolve only over one positive and one negative

clause. This is insofar wrong since also the resolution of tP pu; u; uq; P pfpa; xq; fpb; yq; fpc; zqqu leads

to a system of equations. Even the restriction to monadic predicates is not enough, since functions can

play the same role as polyadic predicates. The corresponding counterexample is then tP pgpu; u; uqq;

 P pgpfpa; xq; fpb; yq; fpc; zqqqu. For this reason the implementation can only handle monadic predi-

cates and function symbols, which is a too small subset to be used in a reasonable prover.

52

CHAPTER 7

Summary and Future Work

The CERES method has been successfully extended to equational theories and tried out on small examples

in the theory ACU. One observation is that for CERES modulo to really make a difference, a proof has to

make actual use of theory inferences. For this reason, existing proofs need to be modified which requires

substantial additional programming. In the case of Fürstenberg’s proof of the infinity of primes, the proof

is represented in the language HLK (shorthand for Handy LK) [SHW] which for instance has automatic

inference of propositional parts of a proof amongst its features. To fit the proof into the framework of

deduction modulo, either the C++ implementation of HLK needs to be adapted to equational inferences

or a replacement needs to be found1. Also the current implementation still concentrates on the refutation

of the characteristic clause set and needs to be extended by the representation of sequent calculus modulo

proofs for the extraction of the characteristic clause term and the projections to work.

On the theoretical level, an obvious extension is to allow propositional rewrite rules. Since a propo-

sitional rewrite rule can rewrite a formula occurrence to one containing strong quantifiers, some eigen-

variable conditions may no longer hold during application of the CERES modulo method. A possible

approach to this is to label formulas with the context of the strongly quantified variables in which they

were before skolemization. The consequence for the resolution part is not that severe; the ENAR rule

already captures these concerns because it has skolemization integrated into its clause set transforma-

tion (see figure 4.4). Since deduction modulo simple type theory also has the cut-elimination property,

it could be interesting to study its relation to higher order sequent calculi, especially since the calculus

LKSK used for CERES! [Wel10] already has labels for formulas and also the p@; rq and pD; lq rules are

restricted to the generalization of skolem terms only.

1The new implementation of CERES in Scala has similar needs. A possible replacement could be the use of a higher order
proof assistant like Isabelle [Isa] or Coq [Coq].

53

Appendix

Listings

Listing 1: Unification Algorithm

1 def u n i f y (f u n c t i o n : ConstantSymbolA ,

2 t e r m s : L i s t [(FOLTerm , FOLTerm)] ,

3 s u b s t s : L i s t [S u b s t i t u t i o n [FOLTerm]]) :

4 L i s t [S u b s t i t u t i o n [FOLTerm]] = {

5 t e r m s match {

6 case (term1 , te rm2) : : r e s t =>

7 t e rm1 match {

8 / / compar ing c o n s t a n t t o s t h g e l s e

9 case FOLConst (c1) =>

10 t e rm2 match {

11 / / i f t h e two c o n s t a n t s a r e equa l , t h e s u b s t i t u t i o n i s n o t

12 / / changed , e l s e n o t u n i f i a b l e

13 case FOLConst (c2) =>

14 i f (c1 == c2)

15 c o l l e c t (s u b s t s , ((s : S u b s t i t u t i o n [FOLTerm]) =>

16 u n i f y (f u n c t i o n , r e s t , L i s t (s))))

17 e l s e N i l

18 / / s econd one i s a var => f l i p & v a r i a b l e e l i m i n a t i o n

19 case FOLVar (v) =>

20 v a l ve = S u b s t i t u t i o n [FOLTerm] (te rm2 . a s I n s t a n c e O f [FOLVar] ,

te rm1)

21 v a l newterms = r e s t map m a k e s u b s t i t u t e _ p a i r (ve)

22 c o l l e c t (s u b s t s , (s : S u b s t i t u t i o n [FOLTerm]) =>

23 u n i f y (f u n c t i o n , newterms , L i s t (ve compose s)))

24 / / a n y t h i n g e l s e i s n o t u n i f i a b l e

25 case _ =>

26 N i l

54

27 }

28 / / compar ing f u n c t i o n symbol t o s t h g e l s e

29 case F u n c t i o n (f1 , a r g s 1) =>

30 t e rm2 match {

31 / / d e c o m p o s i t i o n o r ac u n i f i c a t i o n , i f t h e f u n c t i o n symbols a r e

32 / / t h e same , e l s e n o t u n i f i a b l e

33 case F u n c t i o n (f2 , a r g s 2) =>

34 i f (f1 != f2) {

35 N i l

36 } e l s e i f (a r g s 1 . l e n g t h != a r g s 2 . l e n g t h) {

37 th row new E x c e p t i o n (" f u n c t i o n symbol o c c u r e d wi th d i f f e r e n t

a r i t y ! ")

38 } e l s e i f (f1 == f u n c t i o n) {

39 / / ac u n i f i c a t i o n

40 v a l a c u n i v s = a c _ u n i f y (f u n c t i o n , term1 , te rm2)

41 c o l l e c t (a c u n i v s , ((acu : S u b s t i t u t i o n [FOLTerm]) =>

42 c o l l e c t (s u b s t s , ((s u b s t : S u b s t i t u t i o n [FOLTerm]) =>

43 u n i f y (f u n c t i o n , r e s t map m a k e s u b s t i t u t e _ p a i r (s u b s t) , L i s t

((acu compose s u b s t))))

44)))

45 } e l s e {

46 / / non ac u n i f i c a t i o n => d e c o m p o s i t i o n

47 c o l l e c t (s u b s t s , (s : S u b s t i t u t i o n [FOLTerm]) => u n i f y (f u n c t i o n ,

(a r g s 1 z i p a r g s 2) : : : r e s t , L i s t (s)))

48 }

49 / / v a r i a b l e a s second te rm : f l i p & v a r i a b l e e l i m i n a t i o n

50 case FOLVar (v) =>

51 / / o c c u r s check

52 i f (o c c u r s (te rm2 . a s I n s t a n c e O f [FOLVar] , te rm1)) {

53 N i l

54 } e l s e {

55 v a l ve = S u b s t i t u t i o n [FOLTerm] (te rm2 . a s I n s t a n c e O f [FOLVar] ,

te rm1)

56 v a l newterms = r e s t map m a k e s u b s t i t u t e _ p a i r (ve)

57 c o l l e c t (s u b s t s , (s : S u b s t i t u t i o n [FOLTerm]) => u n i f y (f u n c t i o n ,

newterms , L i s t ((ve compose s))))

58 }

59 / / a n y t h i n g e l s e i s n o t u n i f i a b l e

60 case _ =>

61 N i l

62 }

55

63 / / v a r i a b l e e l i m i n a t i o n

64 case FOLVar (v) =>

65 t e rm2 match {

66 case FOLVar (w) =>

67 i f (v == w) {

68 c o l l e c t (s u b s t s , (s : S u b s t i t u t i o n [FOLTerm]) => u n i f y (f u n c t i o n ,

r e s t , L i s t (s)))

69 } e l s e {

70 v a l ve = S u b s t i t u t i o n [FOLTerm] (te rm1 . a s I n s t a n c e O f [FOLVar] ,

te rm2)

71 v a l newterms = r e s t map m a k e s u b s t i t u t e _ p a i r (ve)

72 c o l l e c t (s u b s t s , (s : S u b s t i t u t i o n [FOLTerm]) => u n i f y (f u n c t i o n ,

newterms , L i s t ((ve compose s) . a s I n s t a n c e O f [S u b s t i t u t i o n [

FOLTerm]])))

73 }

74

75 case _ =>

76 / / o c c u r s check

77 i f (o c c u r s (te rm1 . a s I n s t a n c e O f [FOLVar] , te rm2)) {

78 N i l

79 } e l s e {

80 v a l ve = S u b s t i t u t i o n [FOLTerm] (te rm1 . a s I n s t a n c e O f [FOLVar] ,

te rm2)

81 v a l newterms = r e s t map m a k e s u b s t i t u t e _ p a i r (ve)

82 c o l l e c t (s u b s t s , (s : S u b s t i t u t i o n [FOLTerm]) => u n i f y (f u n c t i o n ,

newterms , L i s t [S u b s t i t u t i o n [FOLTerm]] ((ve compose s))))

83 }

84 }

85

86 / / t h i s s h o u l d be empty i n t h e end

87 case _ =>

88 th row new E x c e p t i o n (" t h e r e s h o u l d be on ly v a r i a b l e s , c o n s t a n t s and

f u n c t i o n s i n f i r s t o r d e r t e r m s ! ")

89 }

90

91 case N i l =>

92 s u b s t s

93 }

94 }

56

Fibonacci Example

Axioms

A1 fp0q � 1 A6 @x@ypx x� py � 1qq

A2 fp1q � 1 A7 @x x x

A3 @xpfppx� 1q � 1qq � fpx� 1q � fpxq A8 @x@y@zpx yq ^ py zq ñ px zq

A4 @x x 0 A9 @x@y@npx� n � y � nñ x � yq

A5 @x@ypx y ô Dzpx� z � 1 � yqq

INDrAs Ap0q ^ p@Apxq ñ Apx� 1qq ñ @xApxq

Definitions

2 � 1� 1

3 � p1� 1q � 1

4 � pp1� 1q � 1q � 1

AX � A1; : : : ; A9

Dependencies

Lemma 1 Lemma 2Lemma 3

Lemma 4

Lemma 5

Lemma 6

Lemma 7

Lemma 8

Lemma 9

Lemma 10

Lemma 1: $ 2 fp3q

AX $RE2� 0� 1 � 2� 1
D; r

AX $REDz2� z � 1 � 2� 1 AX; 2 2� 1 $RE2 2� 1

AX; Dz2� z � 1 � 2� 1ñ 2 2� 1 $RE2 2� 1
w; l

AX; 2 2� 1ñ Dz2� z � 1 � 2� 1; Dz2� z � 1 � 2� 1ñ 2 2� 1 $RE2 2� 1
^; l

AX; 2 2� 1ô Dz2� z � 1 � 2� 1 $RE2 2� 1
@; l

AX;@yp2 y ô Dz2� z � 1 � yq $RE2 2� 1
@; l

AX;A5 $RE2 2� 1
c; l

AX $RE2 2� 1

(**)

AX $REfp1q � 1

AX $REfp1q � 1

AX $REfp0q � 1

(**)
AX $RE2 2� 1

�; r
AX $RE2 1� fp0q � 1

AX $RE2 1� fp0q � fp1q
�; r

AX $RE2 fp1q � fp0q � fp1q

(*)

AX; fp3q � fp2q � fp1q $REfp3q � fp2q � fp1q
@; l

AX;AX3 $REfp3q � fp2q � fp1q
c; l

AX $REfp3q � fp2q � fp1q

AX; fp2q � fp1q � fp0q $REfp3q � fp2q � fp1q
@; l

AX;AX3 $REfp2q � fp1q � fp0q
c; l

AX $REfp2q � fp1q � fp0q (*)
�; r

AX $RE2 fp2q � fp1q
�; r

AX $RE2 fp3q

Lemma 2: 0 1

AX $RE0� 1� 0 � 1
D; r

AX $REDz0� 1� z � 1 AX; 0 1 $RE0 1

AX; Dz0� 1� z � 1ñ 0 1 $RE0 1
w; l

AX; 0 1ñ Dz0� 1� z � 1; Dz0� 1� z � 1ñ 0 1 $RE0 1
^; l

AX; 0 1ô Dz0� 1� z � 1 $RE0 1
@; l

AX;@yp0 y ô Dz0� 1� z � yq $RE0 1
@; l

AX $RE0 1

Lemma 3: @xyzpx y ñ x y � zq

c1 c2 � c3; c1 c2 $REc1 c2 � c3

$REA6

c1 c2 � c3; c1 c2; c2 � c3 c2 � c3 � 0� 1 $REc2 � c3 c2 � c3 � 1
@; l

c1 c2 � c3; c1 c2;@ypc2 � c3 c2 � c3 � y � 1q $REc2 � c3 c2 � c3 � 1
@; l

c1 c2 � c3; c1 c2; A6 $REc2 � c3 c2 � c3 � 1
cut

c1 c2 � c3; c1 c2 $REc2 � c3 c2 � c3 � 1

c1 c2 � c3; c1 c2 $REc1 c2 � c3 ^ c2 � c3 c2 � c3 � 1 c1 c2 � c3 � 1 $REc1 c2 � c3 � 1
ñ; l

pc1 c2 � c3; c1 c2; c1 c2 � c3 ^ c2 � c3 c2 � c3 � 1q ñ c1 c2 � c3 � 1 $REc1 c2 � c3 � 1

(*)

c1 c2 $REc1 c2 � 0
ñ; r

$REc1 c2 ñ c1 c2 � 0

c1 c2 $REc1 c2

A8 $REpc1 c2 � c3 ^ c2 � c3 c2 � c3q ñ c1 c2 � c3 � 1 (*)
cut

c1 c2 � c3; c1 c2 $REc1 c2 � c3 � 1
ñ; l

c1 c2 ñ c1 c2 � c3; c1 c2 $REc1 c2 � c3 � 1
ñ; r

c1 c2 ñ c1 c2 � c3 $REc1 c2 ñ c1 c2 � c3 � 1
ñ; r

$REpc1 c2 ñ c1 c2 � c3q ñ pc1 c2 ñ c1 c2 � c3 � 1q
@; r

$RE@zppc1 c2 ñ c1 c2 � zq ñ pc1 c2 ñ c1 c2 � z � 1qq
_; r

$REc1 c2 ñ c1 c2 � 0^ @zppc1 c2 ñ c1 c2 � zq ñ pc1 c2 ñ c1 c2 � z � 1qq @zpc1 c2 ñ c1 c2 � zq $RE@zpc1 c2 ñ c1 c2 � zq

pc1 c2 ñ c1 c2 � 0^ @zppc1 c2 ñ c1 c2 � zq ñ pc1 c2 ñ c1 c2 � z � 1qqq ñ @zpc1 c2 ñ c1 c2 � zq $RE@zpc1 c2 ñ c1 c2 � zq
@; r

IND $RE@yzpc1 y ñ c1 y � zq
@; r

IND $RE@xyzpx y ñ x y � zq

Lemma 4: @x1 fpx� 3q

$REA8

$RE1 fp0q � 1

$RELemma1 Lemma1 $REfp0q � 1 fp3q

$REfp0q � 1 fp3q
^; r

$RE1 fp0q � 1^ fp0q � 1 fp3q 1 fp3q $RE1 fp3q

1 fp0q � 1^ fp0q � 1 fp3q ñ 1 fp3q $RE1 fp3q
@l; 2x

A8 $RE1 fp3q
cut

$RE1 fp3q

(*)

(*)
$RE1 fp0� 3q

$RELemma3

1 fpx0 � 3q $RE1 fpx0 � 3q 1 fpx0 � 3� 1q $RE1 fpx0 � 3� 1q

1 fpx0 � 3q; 1 fpx0 � 3q ñ 1 fpx0 � 3� 1q $RE1 fpx0 � 3� 1q
@; l � 3

1 fpx0 � 3q; Lemma3 $RE1 fpx0 � 3� 1q
cut

1 fpx0 � 3q $RE1 fpx0 � 3� 1q
ñ; r

$RE1 fpx0 � 3q ñ 1 fpx0 � 3� 1q
@; r

$RE@xp1 fpx� 3q ñ 1 fpx� 3� 1qq
ñ; r

$RE1 fp0� 3q ^ @xp1 fpx� 3q ñ 1 fpx� 3� 1qq @xp1 fpx� 3qq $RE@xp1 fpx� 3qq

INDr1 fpx� 3qs $RE@xp1 fpx� 3qq

Lemma 5: @x@y@npx � y ñ x� n � y � nq

x0 � y0 $REx0 � y0 $REx0 � 1 � x0 � 1

x0 � y0 $REx0 � n0 � y0 � n0 ñ; r
$REx0 � y0 ñ x0 � n0 � y0 � n0

@; r � 3
$RE@x@y@npx � y ñ x� n � y � nq

Lemma 6: @x@y@npx y ñ x� n y � nq

$RELemma5

A5; x0 � z0 � 1 � y0 $REx0 � z0 � 1 � y0 A5; x0 � z0 � 1� n0 � y0 � n0 $REx0 � n0 � z0 � 1 � y0 � n0

A5; x0 � z0 � 1 � y0; x0 � z0 � 1 � y0 ñ x0 � z0 � 1� n0 � y0 � n0 $REx0 � n0 � z0 � 1 � y0 � n0
@; l � 3

A5; x0 � z0 � 1 � y0; Lemma5 $REx0 � n0 � z0 � 1 � y0 � n0
cut

A5; x0 � z0 � 1 � y0 $REx0 � n0 � z0 � 1 � y0 � n0
D; r

A5; x0 � z0 � 1 � y0 $REDzx0 � n0 � z � 1 � y0 � n0

(**)

(**)
A5; x0 � z0 � 1 � y0 $REDzx0 � n0 � z � 1 � y0 � n0

x0 � n0 y0 � n0 $REx0 � n0 y0 � n0 Dzx0 � n�z � 1 � y0 � n0 $REDzx0 � n�z � 1 � y0 � n0
ñ; l

Dzx0 � n�z � 1 � y0 � n0 ñ x0 � n0 y0 � n0; Dzx0 � n0 � z � 1 � y0 � n0 $REx0 � n0 y0 � n0
@; l � 3{^; l{w; l

A5; Dzx0 � n0 � z � 1 � y0 � n0 $REx0 � n0 y0 � n0

A5; x0 � z0 � 1 � y0 $REx0 � n0 y0 � n0

(*)

Dzpx0 � z � 1 � y0q $REDzpx0 � z � 1 � y0q x0 y0 $REx0 y0

x0 y0; x0 y0 ñ Dzpx0 � z � 1 � y0q ñ $REDzpx0 � z � 1 � y0q
@; l � 2�^; l � w

A5; x0 y0 $REDzpx0 � z � 1 � y0q

(*)
A5; x0 � z0 � 1 � y0 $REx0 � n0 y0 � n0

D; l
A5; Dzpx0 � z � 1 � y0q $REx0 � n0 y0 � n0

A5; x0 y0 $REx0 � n0 y0 � n0 ñ; r
A5 $REx0 y0 ñ x0 � n0 y0 � n0

@; r � 3
A5 $RE@x@y@npx � y ñ x� n � y � nq

Lemma 7: pAp0q ^Ap1qq ^ @xApx� 2q ñ @xApxq (Schema)

Ap0q $REAp0q

Ap0q; Apx0 � 1q; Apx0q $REApx0 � 1q
@; l

Ap0q;@xApx� 1q; Apx0q $REApx0 � 1q
ñ; r

Ap0q;@xApx� 1q $REApx0q ñ Apx0 � 1q
@; r

Ap0q;@xApx� 1q $RE@xpApxq ñ Apx� 1qq
^; r

Ap0q;@xApx� 1q $REAp0q ^ @xpApxq ñ Apx� 1qq

Apx0q $REApx0q
@; l

@xApxq $REApx0q
@; r

@xApxq $RE@xApxq
ñ; l

INDrApxqs; Ap0q;@xApx� 1q $RE@xApxq

(*)

Ap1q $REAp1q

Ap0q; Ap1q; Apx1 � 1q; Apx1 � 2q $REApx1 � 2q
@; l

Ap0q; Ap1q;@xApx� 2q; Apx1 � 1q $REApx1 � 2q
ñ; r

Ap0q; Ap1q;@xApx� 2q $REApx1 � 1q ñ Apx1 � 2q
@; r

Ap0q; Ap1q;@xApx� 2q $RE@xpApx� 1q ñ Apx� 2qq

Ap0q; Ap1q;@xApx� 2q $REAp1q ^ @xpApx� 1q ñ Apx� 2qq

(*)
INDrApxqs; Ap0q; Ap1q;@xApx� 2q;@xApx� 1q $RE@xApxq

ñ; lpINDq
INDrApxqs; INDrApx� 1qs; Ap0q; Ap1q;@xApx� 2q $RE@xApxq

^; l
INDrApxqs; INDrApx� 1qs; Ap0q ^Ap1q;@xApx� 2q $RE@xApxq

^; l
INDrApxqs; INDrApx� 1qs; pAp0q ^Ap1qq ^ @xApx� 2q $RE@xApxq

Lemma 8: @xp0 fpxqq

� � AX; INDr0 fpxqs; INDr0 fpx� 1qs; INDr0 fpx� 2qs; 0 1

AX; 0 fpx2 � 2q $RE0 fpx2 � 2q AX; 0 fpx2 � 2q; 0 fpx2 � 2q � fpx2 � 1q $RE0 fpx2 � 2q � fpx2 � 1q
ñ; l

AX; 0 fpx2 � 2q; 0 fpx2 � 2q ñ 0 fpx2 � 2q � fpx2 � 1q $RE0 fpx2 � 2q � fpx2 � 1q

(V)

AX; INDr::::s $RELemma3

(V)
@; l

AX; 0 fpx2 � 2q;@zp0 fpx2 � 2q ñ 0 fpx2 � 2q � zq $RE0 fpx2 � 2q � fpx2 � 1q
@; l

AX; 0 fpx2 � 2q;@y@zp0 y ñ 0 y � zq $RE0 fpx2 � 2q � fpx2 � 1q
@; l

AX; 0 fpx2 � 2q;@x@y@zpx y ñ x y � zq $RE0 fpx2 � 2q � fpx2 � 1q
cut

AX; 0 fpx2 � 2q $RE0 fpx2 � 2q � fpx2 � 1q

(IV)

AX; fp2q � fp1q � fp0q $REfp2q � fp1q � fp0q
@; l

AX;AX3 $REfp2q � fp1q � fp0q
c; l

AX $REfp2q � fp1q � fp0q

AX $REfp1q � 1

AX $RE0� fp0q � 1 � 1� fp0q
D; r

AX $REDzp0� z � 1 � 1� fp0qq AX; 0 1� fp0q $RE0 1� fp0q
ñ; l

AX; Dzp0� z � 1 � 1� fp0qq ñ 0 1� fp0q $RE0 1� fp0q
w; l

AX; 0 1� fp0q ñ Dzp0� z � 1 � 1� fp0qq; Dzp0� z � 1 � 1� fp0qq ñ 0 1� fp0q $RE0 1� fp0q
^; l

AX; 0 1� fp0q ô Dzp0� z � 1 � 1� fp0qq $RE0 1� fp0q
@; l

AX;@yp0 y ô Dzp0� z � 1 � yqq $RE0 1� fp0q
@; l

AX;AX5 $RE0 1� fp0q
c; l

AX $RE0 1� fp0q
�; r

AX $RE0 fp1q � fp0q
�; r

AX $RE0 fp0� 2q

(III)

(III)
AX $RE0 fp0� 2q

AX; fpx2 � 3q � fpx2 � 2q � fpx2 � 1q $REfpx2 � 3q � fpx2 � 2q � fpx2 � 1q
@; l

AX;AX3 $REfpx2 � 3q � fpx2 � 2q � fpx2 � 1q
c; l

AX $REfpx2 � 3q � fpx2 � 2q � fpx2 � 1q (IV)
�; r

AX; 0 fpx2 � 2q $RE0 fpx2 � 3q
ñ; r

AX $RE0 fpx2 � 2q ñ 0 fpx2 � 3q
@; r

AX $RE@xp0 fpx� 2q ñ 0 fpx� 3qq
^; r

AX $RE0 fp0� 2q ^ @xp0 fpx� 2q ñ 0 fpx� 3qq

0 fpx1 � 2q $RE0 fpx1 � 2q
@; l

@xp0 fpx� 2qq $RE0 fpx1 � 2q
@; r

@xp0 fpx� 2qq $RE@xp0 fpx� 2qq

AX; INDr0 fpx� 2qs $RE@xp0 fpx� 2qq

(II)

(Lemma 8 ctd.)

(II)
AX; INDr0 fpx� 2qs $RE@xp0 fpx� 2qq

(Lemma 7 [0 fpxq])

INDr0 fpxqs; INDr0 fpx� 1qs; p0 fp0q ^ 0 fp1qq ^ @xp0 fpx� 2qq $RE@xp0 fpxqq

0 fpx0q $RE0 fpx0q
@; l

@xp0 fpxqq $RE0 fpx0q
@; r

@xp0 fpxqq $RE@xp0 fpxqq
cut

�; 0 fp0q; 0 fp1q;@xp0 fpx� 2qq $RE@xp0 fpxqq
cut

�; 0 fp0q; 0 fp1q $RE@xp0 fpxqq

(I)

AX $RELemma2

AX $REfp0q � 1 AX; 0 1 $RE0 1
�; r

AX; 0 1 $RE0 fp0q

AX $REfp1q � 1 AX; 0 1 $RE0 1
�; r

AX; 0 1 $RE0 fp1q

(I)
�; 0 fp0q; 0 fp1q $RE@xp0 fpxqq

cut
�; 0 fp0q $RE@xp0 fpxqq

cut
� $RE@xp0 fpxqq

cut
AX; INDr0 fpxqs; INDr0 fpx� 1qs; INDr0 fpx� 2qs $RE@xp0 fpxqq

Lemma 9: @xfpxq � 1 fpx� 3q ñ fpx� 1q � 1 fppx� 3q � 1q

�2 � AX; INDr0 fpxqs; INDr0 fpx� 1qs; INDr0 fpx� 2qs

AX $RELemma8

AX; 0 fpx0q $RE0 fpx0q
@; l

AX;Lemma8 $RE0 fpx0q

AX $RE0 fpx0q AX; 0� fpx0 � 3q fpx0q � fpx0 � 3q $REfpx0 � 3q fpx0 � 3q � fpx0q

AX; 0 fpx0q ñ 0� fpx0 � 3q fpx0q � fpx0 � 3q $REfpx0 � 3q fpx0 � 3q � fpx0q

(****)

AX; 1 fpx0 � 3q $RE1 fpx0 � 3q

AX $RELemma6

(****)
AX; 0 fpx0q ñ 0� fpx0 � 3q fpx0q � fpx0 � 3q $REfpx0 � 3q fpx0 � 3q � fpx0q

@; l
AX;@zp0 fpx0q ñ 0� z fpx0q � zq $REfpx0 � 3q fpx0 � 3q � fpx0q

@; l
AX;@y@zp0 y ñ 0� z y � zq $REfpx0 � 3q fpx0 � 3q � fpx0q

@; l
AX;Lemma6 $REfpx0 � 3q fpx0 � 3q � fpx0q

cut
AX $REfpx0 � 3q fpx0 � 3q � fpx0q

w; l
AX; 1 fpx0 � 3q $REfpx0 � 3q fpx0 � 3q � fpx0q

^; r
AX; 1 fpx0 � 3q $RE1 fpx0 � 3q ^ fpx0 � 3q fpx0 � 3q � fpx0q

(***)

(***)
AX; 1 fpx0 � 3q $RE1 fpx0 � 3q ^ fpx0 � 3q fpx0 � 3q � fpx0q AX; 1 fpx0 � 3q � fpx0q $RE1 fpx0 � 3q � fpx0q

ñ; l
AX; 1 fpx0 � 3q ^ fpx0 � 3q fpx0 � 3q � fpx0q ñ 1 fpx0 � 3q � fpx0q; 1 fpx0 � 3q $RE1 fpx0 � 3q � fpx0q

@; l
AX;@zp1 fpx0 � 3q ^ fpx0 � 3q z ñ 1 zq; 1 fpx0 � 3q $RE1 fpx0 � 3q � fpx0q

(**)

AX; INDr1 fpx� 3qs $RELemma4

(**)
AX;@zp1 fpx0 � 3q ^ fpx0 � 3q z ñ 1 zq; 1 fpx0 � 3q $RE1 fpx0 � 3q � fpx0q

@; l
AX;@y@zp1 y ^ y z ñ 1 zq; 1 fpx0 � 3q $RE1 fpx0 � 3q � fpx0q

@; l
AX;A8; Lemma4 $RE1 fpx0 � 3q � fpx0q

c; l
AX;Lemma4 $RE1 fpx0 � 3q � fpx0q

cut
AX $RE1 fpx0 � 3q � fpx0q

(**)

AX $RELemma6

(**) AX; 1 fpx0 � 3q � fpx0q ñ 1� fpx0 � 1q fpx0 � 3q � fpx0q � fpx0 � 1q $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q
ñ; l

AX; 1 fpx0 � 3q � fpx0q ñ 1� fpx0 � 1q fpx0 � 3q � fpx0q � fpx0 � 1q $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q
@; l

AX;@zp1 fpx0 � 3q � fpx0q ñ 1� z fpx0 � 3q � fpx0q � zq $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q
@; l

AX;@y@zp1 y ñ 1� z y � z $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q
@; l

AX;Lemma6 $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q

AX $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q
w; l

AX; fpx0q � 1 fpx0 � 3q $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 1q � fpx0q

(*)

(Lemma 9 ctd.)

AX; fpx0 � 4q � fpx0 � 3q � fpx0 � 2q $REfpx0 � 4q � fpx0 � 3q � fpx0 � 2q
@; l

AX;A3 $REfpx0 � 4q � fpx0 � 3q � fpx0 � 2q

AX; fpx0 � 2q � fpx0 � 1q � fpx0q $REfpx0 � 2q � fpx0 � 1q � fpx0q
@; l

AX;A3 $REfpx0 � 2q � fpx0 � 1q � fpx0q (*)
�; r

AX; fpx0q � 1 fpx0 � 3q $REfpx0 � 1q � 1 fpx0 � 3q � fpx0 � 2q
�; r

AX; fpx0q � 1 fpx0 � 3q $REfpx0 � 1q � 1 fpx0 � 4q
ñ; r

AX $REfpx0q � 1 fpx0 � 3q ñ fpx0 � 1q � 1 fpx0 � 4q
@; r

AX $RE@xfpxq � 1 fpx� 3q ñ fpx� 1q � 1 fpx� 4q

Lemma 10: @xfpxq � 1 fpx� 3q

Remark: this must also work without induction, since lemma 9 does not use the induction hypothesis.

$RELemma1 Lemma1 $REfp0q � 1 fp3q

$REfp0q � 1 fp3q

$RELemma9 Lemma9 $RE@xfpxq � 1 fpx� 3q ñ fpx� 1q � 1 fpx� 4q

$RE@xfpxq � 1 fpx� 3q ñ fpx� 1q � 1 fpx� 4q
^; r

$REfp0q � 1 fp3q ^ @xfpxq � 1 fpx� 3q ñ fpx� 1q � 1 fpx� 4q @xfpxq � 1 fpx� 3q $RE@xfpxq � 1 fpx� 3q
ñ; l

INDrfpxq � 1 fpx� 3qs $RE@xfpxq � 1 fpx� 3q

Notation

When talking about sets of variables, we sometimes group them by writing them in vector notation (especially if their number is

not important). The term fpx1; : : : ; xnq then just becomes fpxq. Vectors over the naturals are then just underlined.

x vector notation for logical symbols

v vector over natural numbers

a; : : : ; d logical constants

e logical constant for the unit element

f; g logical function symbols

i; : : : ; r index variables over the natural numbers

s; t terms of universal algebra and logic

u; : : : ; z logical variables and variables over the naturals

P;Q;R predicate symbols

A; : : : ; G logical formulas

�;�;�;� sets of logical formulas

�; �; � substitutions

�; � proofs

S sequent (occurrence)

X rule name

�; � special vectors (solutions and bases)

List of Tables

3.1 Complexity of the unification problems for AC and ACU . 15

3.2 Unification type of AC- and ACU-unification . 16

3.3 Bases of the diophantine equation u1 � 2x1 � v1 � y1 � 0 . 18

3.4 Positive solutions to the diophantine equation u1 � 2x1 � v1 � y1 � 0 . 18

67

List of Figures

2.1 Rules of equational inference . 4

2.2 Derivation of Reflexivity and Transitivity in Equational Reasoning . 5

2.3 The equational axioms for Associativity, Commutativity, Idempotence, Distributivity, Unit Element and Inverse Element. 5

2.4 Proof of fpa; fpb; cqq � fpfpb; aq; cq . 5

2.5 Examples of E-Unification types for the general unification problem . 7

3.1 Overview of intermediary vectors in the calculation of the basis of 2x1 � x2 � 2y1 � 0 12

3.2 Calculation of a basis via the algorithm of Boudet, Contejean and Devie . 14

3.3 Rule application to get a solution of tgpu; u; uq � gpfpa; xq; fpb; yq; fpc; zqqu 23

4.1 Introduction- and structural rules of Sequent Calculus modulo, equivalent to [DHK03] 25

4.2 Logical rules of Sequent Calculus modulo, equivalent to [DHK03] . 26

4.3 Conversion rules to introduce deduction modulo into theory-free sequent calculus 27

4.4 Clause set transformation rules for ENAR . 28

4.5 Rules of ENAR . 29

4.6 Translation of a resolution step to sequent calculus modulo . 31

5.1 Example for the ancestor relation . 34

5.2 Elimination of a strong quantifier during skolemization . 38

5.3 Substitutivity of the equational conversion rules . 38

5.4 Replacement of the Cut Rule by Implication . 40

5.5 Example of a characteristic clause set calculation . 44

5.6 Resolution refutation of the example characteristic clause set . 44

5.7 Example for projections . 47

5.8 Translation of resolution steps with projections into sequent calculus modulo . 47

5.9 Example in ACNF after combination of the projections . 48

6.1 Characteristic clause set for the example in CERES with LKDe . 50

6.2 Resolution refutation for the example in CERES with LKDe . 50

6.3 ACNF of the example in CERES with LKDe . 51

68

Bibliography

[AK92] Mohamed Adi and Claude Kirchner, Ac-unification race: the system solving approach, implementation and bench-

marks, J. Symb. Comput. 14 (1992), 51–70.

[BCD90] Alexandre Boudet, Evelyne Contejean, and Hervé Devie, A new ac unification algorithm with an algorithm for solving

systems of diophantine equations, LICS, IEEE Computer Society, 1990, pp. 289–299.

[BEL01] Matthias Baaz, Uwe Egly, and Alexander Leitsch, Normal form transformations, in Robinson and Voronkov [RV01],

pp. 273–333.

[BHL�06] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr, Proof transformation by ceres,

MKM (Jonathan M. Borwein and William M. Farmer, eds.), Lecture Notes in Computer Science, vol. 4108, Springer,

2006, pp. 82–93.

[BHL�08] , Ceres: An analysis of fürstenberg’s proof of the infinity of primes, Theor. Comput. Sci. 403 (2008), no. 2-3,

160–175.

[Bir35] Garrett Birkhoff, On the structure of abstract algebras, Mathematical Proceedings of the Cambridge Philosophical

Society, vol. 31, 1935, pp. 433–454.

[BL99] Matthias Baaz and Alexander Leitsch, Cut normal forms and proof complexity, Ann. Pure Appl. Logic 97 (1999),

no. 1-3, 127–177.

[BL00] , Cut-eleminination and redundancy-elimination by resolution, J. Symbolic Computation 29 (2000), no. 2.

[BL06] , Towards a clausal analysis of cut-elimination, J. Symb. Comput. 41 (2006), no. 3-4, 381–410.

[BN98] Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge University Press, New York, NY, USA,

1998.

[BS81] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, vol. 78, Springer-

Verlag, New York, 1981.

[BS01] Franz Baader and Wayne Snyder, Unification theory, in Robinson and Voronkov [RV01], pp. 445–532.

[Bus98] Samuel R. Buss, An introduction to proof theory, Studies in Logic and the Foundations of Mathematics, vol. 137,

pp. 36–58, Elsevier, Amsterdam, 1998.

[CF89] Michael Clausen and Albrecht Fortenbacher, Efficient solution of linear diophantine equations, J. Symb. Comput. 8
(1989), 201–216.

[Con93] Evelyne Contejean, Solving linear diophantine constraints incrementally, Proceedings of the tenth international confer-

ence on logic programming on Logic programming (Cambridge, MA, USA), ICLP’93, MIT Press, 1993, pp. 532–549.

[Coq] Coq website, http://coq.inria.fr.

[Dav53] Martin Davis, Arithmetical problems and recursively enumerable predicates, Journal of Symbolic Logic 18 (1953),

no. 1, 33–41.

69

[DHK03] Gilles Dowek, Thérèse Hardin, and Claude Kirchner, Theorem proving modulo, J. Autom. Reasoning 31 (2003), no. 1,

33–72.

[Dio52] Diophantus, Arithmetik des Diophantos aus Alexandria, Vandenhoeck & Ruprecht, 1952, Ed. Arthur Czwalina.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud, Rewrite systems, 243–320.

[Dom91a] Eric Domenjoud, Outils pour la déduction automatique dans les théories associatives-commutatives, Thèse de doctorat,

Ph.D. thesis, Université de Nancy I, France, 1991.

[Dom91b] , Solving systems of linear diophantine equations: An algebraic approach, MFCS, 1991, pp. 141–150.

[Dom92] Eric Domenjoud, A technical note on ac-unification. the number of minimal unifiers of the equation �x1 � � � � �

�xp
:
�AC �y1 � � � � � �yq , Journal of Automated Reasoning 8 (1992), 39–44, Also available as Technical Report

89-R-2, CRIN, Nancy (France).

[Dow01] Gilles Dowek, Higher-order unification and matching, in Robinson and Voronkov [RV01], pp. 1009–1062.

[DPR61] Martin Davis, Hilary Putnam, and Julia Robinson, The decision problem for exponential diophantine equations, The

Annals of Mathematics 74 (1961), no. 3, 425–436.

[DW03] Gilles Dowek and Benjamin Werner, Proof normalization modulo, J. Symb. Log. 68 (2003), no. 4, 1289–1316.

[Eke93] Steven M. Eker, Improving the efficiency of ac matching and unification, Tech. report, C.R.I.N. INRIA Lorraine, 1993.

[Ekm94] Jan Ekman, Normal proofs in set theory, Ph.D. thesis, Chalmers University and University of Göteborg, 1994.

[Fag84] François Fages, Associative-commutative unification, CADE (Robert E. Shostak, ed.), Lecture Notes in Computer

Science, vol. 170, Springer, 1984, pp. 194–208.

[For87] Albrecht Fortenbacher, An algebraic approach to unification under associativity and commutativity, J. Symb. Comput.

3 (1987), no. 3, 217–229.

[Gen35] Gerhard Gentzen, Untersuchungen über das logische Schließen. I, II, Mathematische Zeitschrift 39 (1935), no. 1,

176–210, 405–431.

[God90] Kurt Godden, Lazy unification, Proceedings of the 28th annual meeting on Association for Computational Linguistics

(Stroudsburg, PA, USA), ACL ’90, Association for Computational Linguistics, 1990, pp. 180–187.

[GS93] David Gries and Fred B. Schneider, A logical approach to discrete math, Springer-Verlag New York, Inc., New York,

NY, USA, 1993.

[Hal83] Lars Hallnäs, On normalization of proofs in set theory, Ph.D. thesis, University of Stockholm, 1983.

[Her10] Olivier Hermant, Resolution is cut-free, J. Autom. Reasoning 44 (2010), no. 3, 245–276.

[Hil00] David Hilbert, Mathematische Probleme, Göttinger Nachrichten (1900), 253–297, an english translation can be

found as Mathematical Problems in Bulletin of the American Mathematical Society 8 (1902) or online under

http://aleph0.clarku.edu/ djoyce/hilbert/problems.html.

[HLWP08] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo, Herbrand sequent extraction, AIS-

C/MKM/Calculemus (Serge Autexier, John Campbell, Julio Rubio, Volker Sorge, Masakazu Suzuki, and Freek

Wiedijk, eds.), Lecture Notes in Computer Science, vol. 5144, Springer, 2008, pp. 462–477.

[Isa] Isabelle website, http://www.cl.cam.ac.uk/research/hvg/Isabelle.

[KN92] Deepak Kapur and Paliath Narendran, Complexity of unification problems with associative-commutative operators, J.

Autom. Reason. 9 (1992), 261–288.

[Kni89] Kevin Knight, Unification: a multidisciplinary survey, ACM Comput. Surv. 21 (1989), 93–124.

70

[Lan89] Dallas Lankford, Non-negative integer basis algorithms for linear equations with integer coefficients, J. Autom. Rea-

soning 5 (1989), no. 1, 25–35.

[LB11] Alexander Leitsch and Matthias Baaz, Methods of cut-elmination, Springer-Verlag New York, Inc., New York, NY,

USA, 2011.

[LC89] Patrick Lincoln and Jim Christian, Adventures in associative-commutative unification, J. Symb. Comput. 8 (1989),

no. 1-2, 217–240.

[Lei94] Daniel Leivant, A foundational delineation of poly-time, Inf. Comput. 110 (1994), 391–420.

[LF05] Alexander Leitsch and Christian Fermüller, The resolution principle, Handbook of Philosophical Logic, second edition

(Dov Gabbay and Franz Guenthner, eds.), vol. 12, Springer, Dordrecht, 2005, pp. 175–278.

[LS76] M. Livesay and Jörg Siekmann, Unification of A+C-terms (bags) and A+C+I-terms (sets), Intern. Ber. 5/76, Universität

Karlsruhe, 1976.

[LWWP�] Tomer Libal, Daniel Weller, Bruno Woltzenlogel-Paleo, Tsvetan Dunchev, Mikheil Rukhaia, and Martin Riener,

Generic Architecture for Proofs, http://code.google.com/p/gapt.

[Mat70] Yuri Matiyasevich, Enumerable sets are diophantine, Doklady Akademii Nauk SSSR 191 (1970), no. 2, 279–282,

English translation: Soviet Mathematics. Doklady, 11(2):354–358.

[MM82] Alberto Martelli and Ugo Montanari, An efficient unification algorithm, ACM Trans. Program. Lang. Syst. 4 (1982),

258–282.

[Pal09] Bruno Woltzenlogel Paleo, A general analysis of cut-elimination by ceres, Ph.D. thesis, University of Technology

Vienna, 2009.

[Pla93] David A. Plaisted, Equational reasoning and term rewriting systems, pp. 274–364, Oxford University Press, Inc., New

York, NY, USA, 1993.

[Plo72] Gordon D. Plotkin, Building-in equational theories, vol. 7, Edinburgh University Press, 1972, pp. 73–90.

[Pot91] Loic Pottier, Minimal solutions of linear diophantine systems: Bounds and algorithms, RTA (Ronald V. Book, ed.),

Lecture Notes in Computer Science, vol. 488, Springer, 1991, pp. 162–173.

[Rob52] Julia Robinson, Existential definability in arithmetic, Transactions of the American Mathematical Society 72 (1952),

no. 3, 437–449, http://www.jstor.org/stable/1990711.

[Rob65] J. A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1965), 23–41.

[Rub99] Albert Rubio, A fully syntactic ac-rpo, RTA (Paliath Narendran and Michaël Rusinowitch, eds.), Lecture Notes in

Computer Science, vol. 1631, Springer, 1999, pp. 133–147.

[Rus96] Bertrand Russell, The Principles of Mathematics, W.W. Norton & Co., February 1996.

[Rus10] Vlad Rusu, Combining theorem proving and narrowing for rewriting-logic specifications, TAP (Gordon Fraser and

Angelo Gargantini, eds.), Lecture Notes in Computer Science, vol. 6143, Springer, 2010, pp. 135–150.

[RV01] John Alan Robinson and Andrei Voronkov (eds.), Handbook of automated reasoning (in 2 volumes), Elsevier and MIT

Press, 2001.

[SHW] Hendrik Spohr, Stefan Hetzl, and Daniel Weller, HLK website, http://logic.at/hlk.

[Sti75] Mark E. Stickel, A complete unification algorithm for associative-commutative functions, IJCAI’75: Proceedings of the

4th international joint conference on Artificial intelligence (San Francisco, CA, USA), Morgan Kaufmann Publishers

Inc., 1975, pp. 71–76.

71

[Sti81] , A unification algorithm for associative-commutative functions, J. ACM 28 (1981), no. 3, 423–434.

[Tid86] E Tidén, Unification in combinations of collapse-free theories with disjoint sets of function symbols, Proc. of the

8th international conference on Automated deduction (New York, NY, USA), Springer-Verlag New York, Inc., 1986,

pp. 431–449.

[TS00] A. S. Troelstra and H. Schwichtenberg, Basic proof theory (2nd ed.), Cambridge University Press, New York, NY,

USA, 2000.

[Wei] Eric W. Weisstein, Fermat’s last theorem, From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/FermatsLastTheorem.html.

[Wel10] Daniel Weller, CERES in higher-order logic, Ph.D. thesis, Vienna University of Technology, 2010.

[Yel85] Kathy Yelick, Combining unification algorithms for confined regular equational theories, Proc. of the first international

conference on Rewriting techniques and applications (New York, NY, USA), Springer-Verlag New York, Inc., 1985,

pp. 365–380.

“And the whole setup is just a trap to capture escaping logicians.

None of the doors actually lead out.”

by Randall Munroe, with courtesy taken from http://xkcd.com/246

72

http://xkcd.com/246

	Contents
	1 Introduction
	2 Equational Unification
	2.1 Overview
	2.2 Definition over Universal Algebras
	2.3 Semantics
	2.4 Proof Systems
	2.5 Unification

	3 AC and ACU Unification
	3.1 Overview
	3.2 Deciding the word problem for AC and ACU
	3.3 Diophantine Equations
	3.4 Semantic AC and ACU unification
	3.5 Sets of equations

	4 Deduction Modulo
	4.1 Deduction Modulo
	4.2 Sequent Calculus modulo
	4.3 Extended Narrowing and Resolution
	4.4 Cut-Elimination

	5 Cut-elimination Modulo
	5.1 CERES
	5.2 CERES modulo

	6 Implementation and Experiments
	6.1 Overview
	6.2 Examples and Comparison to CERES
	6.3 Implementation Details

	7 Summary and Future Work
	Appendix
	Listings
	Fibonacci Example

	Notation
	List of Tables
	List of Figures
	Bibliography

