
Instantiation for Theory Reasoning in Vampire
Giles Reger Martin Riener
University of Manchester, Manchester, UK

Abstract: Reasoning with theories and quantifiers in first-order logic is very hard. Over the past 3 years
we have extended the Vampire theorem prover with various techniques for reasoning with problems mixing
arithmetic, quantifiers, and uninterpreted functions. In this most recent work we introduce a new method for
instantiation that makes use of SMT solvers to find simplifying instances of clauses and a new approach to
unification that enables the application of this rule.

1 Introduction

We are interested in extending automated theorem provers
for first-order logic to reason effectively with problems con-
taining non-trivial quantification and theories such as arith-
metic or datatypes. Such problems arise naturally in, for
example, program analysis where quantifiers are required
to axiomatise features such as dynamic memory, and arith-
metic is central to most real-world programs.

Our work is in the context of the Vampire theorem prover
[1]. This is an automated theorem prover (ATP) that is
saturation-based and implements the superposition and res-
olution calculus. In saturation-based theorem provers the
approach is to first transform the input problem into clausal
form and then saturate the set of clauses with respect to an
inference system. Vampire is also a refutational prover; its
first step is always to negate the goal, which means that it
aims to derive a contradiction. In pure first-order logic this
approach can be refutationally complete. This breaks down
in the presence of theories such as arithmetic.

Over the past 3 years we have been exploring different
approaches for theory reasoning within Vampire. This has
included using an SMT solver to guide proof search [2]
and heuristics to control the use of theory axioms such as
x + y = y + x [3]. This work considers the problem of
instantiation (for theories) in this context.

2 Background

We consider a many-sorted first-order logic over the signa-
ture Σ = (Ξ,Ω). The set Ω contains predicate and function
symbols with argument and return values in the set of sorts
Ξ (which contains the sort B of truth values). A term is
a constant c, a variable x or an application f(t1, . . . , tn)
of the n-ary function symbol f to the terms t1 to tn. We
assume terms are well-sorted. A function symbol p with
return sort B is called a predicate symbol. Its application
p(t1, . . . , tn) is called an atom. We assume the presence
of an equality predicate for each sort. A literal is either an
atom A or a negated atom ¬A. We abbreviate ¬(c 's d) as
c 6's d. A subterm s of t at position p is written as t[s]p.

A clause is a multiset of literals which is interpreted as
a disjunction L1 ∨ . . . ∨ Ln. A substitution θ = {x1 7→
t1, . . . xn 7→ tn} maps variables to terms; applying θ to
a term simultaneously replaces the variables by the corre-

sponding terms. A unifier θ of two terms s and t is a substi-
tution such that (s ' t)θ is valid; a most general unifier of
s and t is a unifier that is not an instance of any other unifier
of those terms up to renaming of variables.

A theory defines a class of interpretations. All interpre-
tations in a theory T agree on the assignment for a set of
theory symbols. A symbol that does not have a fixed inter-
pretation is called a non-theory symbol.

A literal is a theory literal if its predicate symbol is a the-
ory symbol. The equality's predicate of a sort s is a theory
symbol if the sort s is interpreted by a theory. A pure literal
contains only theory symbols or only non-theory symbols.
A clause is fully abstracted if it only contains pure literals
and partially abstracted if non-theory symbols no not ap-
pear inside applications of theory symbols. A non-variable
term t is a theory term (non-theory term) if its top function
symbol is a theory symbol (non-theory symbol).

Given a clauseL[t]∨C, whereL is a theory literal and t is
a non-theory literal or vice versa, we can separate them by
introducing a fresh variable x for t to obtain L[x]∨C∨x 6'
t. Repeating this process leads to an abstracted clause.

2.1 Does Vampire Need Instantiation?

To see why Vampire can benefit from instantiation, consider
the first-order clause

14x 6' x2 + 49 ∨ p(x) (1)

for which there is a single integer value for x that makes
the first literal false with respect to the underlying theory of
arithmetic, namely x = 7. However, if we apply standard
superposition rules to the original clause and a sufficiently
rich axiomatisation of arithmetic, we will most likely end
up with a very large number of logical consequences and
never generate p(7), or run out of space before generating it.
Indeed, Vampire cannot find a refutation of 14x 6' x2 + 49
in reasonable time using our previous approaches [2, 3].

3 What Kind of Instances Do We Want?

Since there are possibly infinitely many instantiations, we
only want to create instances with an immediate benefit.
The inference rule we consider is of the form

P ∨D
Dθ

theory instance
(2)



where P contains only pure theory literals and Pθ is unsat-
isfiable in the given theory. As P contains only pure theory
literals we can use a SMT solver to find a model of ¬P and
use this to generate θ. In the case of clause 1 above, we pick
P = 14x ' x2 + 49 to extract {x 7→ 7} from the model
generated by the SMT solver. From this we can conclude
p(7). If the SMT solver finds ¬P to be unsatisfiable then
P is a tautology and P ∨D can instead by removed. Note
that we assume that the theory is complete. The result of
this approach is that we produce instances that are shorter.

4 Instantiation in a Saturation-Based Theorem Prover

For clauses containing inequalities, we would prefer to ap-
ply the equality resolution rule

s 6' t ∨ C
Cθ

θ = mgu(s, t), equality resolution

instead of instantiation. For the clause x 6' 1 + y ∨ p(x, y),
equality resolution leads to p(y + 1, y) which is more gen-
eral than p(1, 0) obtained from instantiating with {x 7→
0, y 7→ 0}. Moreover, abstraction and instantiation may
work against each other. If we consider the clause p(1, 5),
it will be abstracted to x 6' 1 ∨ y 6' 5 ∨ p(x, y). But the
substitution {x 7→ 1, y 7→ 5} makes ¬(x 6' 1 ∨ y 6' 5)
valid. If we use it to instantiate p(x, y), we re-obtain the
original clause p(1, 5).

To prevent these effects, we introduce a further restric-
tion on P . A literal L is trivial in clause C if

• L is of the form x 6' t and x does not occur in t
• L is a pure theory literal
• every occurrence of x in C is either x 6' t, in a literal

that is not pure or another literal trivial in C

The inference rule (2) then has the restrictions that
• P contains only pure literals
• P contains no literals trivial in P ∨D
• ¬Pθ is valid in T
Note that there is no requirement on P to be maximal.

The more literals P has, the more precise the instantiation
becomes. This comes at the risk of over-specialising, even
after the removal of trivial literals.

5 Extending Unification to Help

So far we have left out the role of abstraction. In princi-
ple, the rule (2) works on any clause. However, abstracted
clauses have more pure theory literals to apply the rule to.
For example, the clauses

r(14y) and ¬r(x2 + 49) ∨ p(x)

permit neither the application of resolution nor of theory
instantiation. But their abstracted form

r(u) ∨ u 6' 14y and ¬r(v) ∨ v 6' x2 + 49 ∨ p(x)

can be resolved to u 6' 14x ∨ u 6' x2 + 49 ∨ p(x) which
becomes p(7) after theory instantiation.

However, fully abstracting every clause has a devastat-
ing impact on proof search because it significantly increases
the clause length. If we only apply theory instantiation after
such a resolution step, we can modify the unification proce-
dure to generate an abstraction on the fly. Unification with
abstraction, written mguabs(s, t), returns a pair (θ,D), if
possible, where D is a disjunction of inequalities and θ is a
substitution making (D∨s ' t)θ valid in a theory T . If we
can show that D are unsatisfiable then we have performed
unification modulo T . By happy coincidence, the theory
instantiation rule can handle such theory constraints.

Unification with abstraction should not be applied to ea-
gerly as it, in the limit, it can be used to make any two terms
unify. For example, we would like to prevent abstraction in
the case of resolving r(1) with r(2) because the generated
constraint 1 ' 2 can never be true. In general, mguabswill
never produce constraints that can not be equal in the un-
derlying theory. We have also experimented with heuristics
that decide for which subterms abstractions are generated.

The calculus can be adapted to use unification with ab-
straction instead of the traditional one. The resolution rule
then becomes

A ∨ C1 ¬A′ ∨ C2

(D ∨ C1 ∨ C2)θ
reswA

where (θ,D) = mguabs(A,A
′). The factoring, superposi-

tion and equality resolution rules can be similarly adapted.

6 Summary

We have implemented a new approach to reasoning with
theories and quantifiers in a saturation-based theorem
prover. This approach utilises an SMT solver to find useful
instances and extends unification to produce clauses that are
likely to have useful instances. We have implemented these
approaches in Vampire[4], our experiments indicate that
unification with abstraction is beneficial for some cases.
Acknowledgements. We describe work published by the
first author, Martin Suda, and Andrei Voronkov [4].

References

[1] Laura Kovács and Andrei Voronkov. First-order theo-
rem proving and Vampire. In CAV 2013, volume 8044
of LNCS, pages 1–35, 2013.

[2] Giles Reger, Nikolaj Bjørner, Martin Suda, and Andrei
Voronkov. AVATAR modulo theories. In GCAI 2016,
volume 41 of EPiC Series in Computing, pages 39–52.
EasyChair, 2016.

[3] Giles Reger and Martin Suda. Set of support for theory
reasoning. In IWIL Workshop and LPAR Short Presen-
tations, volume 1 of Kalpa Publications in Computing,
pages 124–134. EasyChair, 2017.

[4] Giles Reger, Martin Suda, and Andrei Voronkov. Uni-
fication with abstraction and theory instantiation in
saturation-based reasoning. In TACAS, 2018.


